Catalyst-free room-temperature iClick reaction of molybdenum(II) and tungsten(II) azide complexes with electron-poor alkynes: Structural preferences and kinetic studies

      Research output: Contribution to journalArticle

      Published
      • Paul Schmid
      • Matthias Maier
      • Hendrik Pfeiffer
      • Anja Belz
      • Lucas Henry
      • Alexandra Friedrich
      • Fabian Schonfeld
      • Katharina Edkins
      • Ulrich Schatzschneider

      View graph of relations

      Two isostructural and isoelectronic group VI azide complexes of the general formula [M([small eta]3-allyl)(N3)(bpy)(CO)2] with M = Mo, W and bpy = 2,2'-bipyridine were prepared and fully characterized, including X-ray structure analysis. Both reacted smoothly with electron-poor alkynes such as dimethyl acetylenedicarboxylate (DMAD) and 4,4,4-trifluoro-2-butynoic acid ethyl ester in a catalyst-free room-temperature iClick [3+2] cycloaddition reaction. Reaction with phenyltrifluoromethylacetylene, on the other hand, did not lead to any product formation. X-ray structures of the four triazolate complexes isolated showed the monodentate ligand to be N2-coordinated in all cases, which requires a 1,2-shift of the nitrogen from the terminal azide to the triazolate cycloaddition product. On the other hand, a 19F NMR spectroscopic study of the reaction of the fluorinated alkyne with the tungsten azide complex at 27 [degree]C allowed detection of the N1-coordinated intermediate. With this method, the second-order rate constant was determined as (7.3+/-0.1) [times] 10-2 M-1 s-1, which compares favorably with that of first-generation compounds such as difluorocyclooctyne (DIFO) used in the strain-promoted azide-alkyne cycloaddition (SPAAC). In contrast, the reaction of the molybdenum analogue turned was too fast to be studied with NMR methods. Alternatively, solution IR studies revealed pseudo-first order rate constants of 0.4 to 6.5 [times] 10-3 s-1, which increased in the order of Mo > W and F3C-C[identical with]C-COOEt > DMAD.

      DOI

      Original languageEnglish
      JournalDalton Transactions
      Journal publication date13 Sep 2017
      DOIs
      StatePublished - 13 Sep 2017

      ID: 134910262