THE EFFECTS OF LEAD SOURCES ON ORAL BIOACCESSIBILITY IN SOIL AND IMPLICATIONS FOR CONTAMINATED LAND RISK MANAGEMENT

Sherry Palmer¹*, Rebekka McIlwaine¹, Ulrich Ofterdinger¹, Siobhan F. Cox¹, Jennifer M. McKinley², Rory Doherty¹, Joanna Wragg³ and Mark Cave³

¹Queen’s University Belfast; School of Planning, Architecture and Civil Engineering; Stranmillis Road, Belfast, United Kingdom, BT9 5AG
²Queen’s University Belfast; School of Geography, Archaeology and Palaeoecology; Elmwood Avenue, Belfast, United Kingdom, BT7 1NN
³British Geological Survey, Kingsley Dunham Centre, Keyworth, United Kingdom, NG12 5GG

*Corresponding author. E-mail: spalmer04@qub.ac.uk Tel.: +44 (0) 2890 975 606 Fax: +44 (0) 2890 974 278

Abstract

Lead (Pb) is a non-threshold toxin capable of inducing toxic effects at any blood level but availability of soil screening criteria for assessing potential health risks is limited. The oral bioaccessibility of Pb in 163 soil samples was attributed to sources through solubility estimation and domain identification. Samples were extracted following the Unified BARGE Method. Urban, mineralisation, peat and granite domains accounted for elevated Pb concentrations compared to rural samples. High Pb solubility explained moderate-high gastric (G) bioaccessible fractions throughout the study area. Higher maximum G concentrations were measured in urban (97.6mg kg⁻¹) and mineralisation (199.8mg kg⁻¹) domains. Higher average G concentrations occurred in mineralisation (36.4mg kg⁻¹) and granite (36.0mg kg⁻¹) domains. Findings suggest diffuse anthropogenic and widespread geogenic contamination could be capable of presenting health risks, having implications for land management decisions in jurisdictions where guidance advises these forms of pollution should not be regarded as contaminated land.

Keywords: anthropogenic pollution, geogenic contamination, oral bioaccessibility, human health risk assessment, soil

Capsule: Diffuse and widespread Pb sources displayed high oral bioaccessibility, providing implications for contaminated land risk assessment guidance that excludes these forms of pollution.
Lead (Pb) is a toxic trace element that has been the subject of extensive human health research. Its neurotoxic effects from the oral exposure pathway, particularly in children, are well documented (EFSA, 2010; ATSDR, 2007; Ryan et al., 2004; CCME, 1999; Rosen, 1995). Some studies also suggest Pb exposure may be associated with increased incidences of violent crime (Meilke & Zahran, 2012; Nevin, 2007; Nevin, 2000). Whilst many known toxins have quantifiable threshold exposure levels above which toxic health effects could occur, Pb is currently regarded by the global scientific community as a non-threshold toxin. Non-threshold toxicity indicates that laboratory studies have not identified a minimal risk level (MRL) or a no observed adverse effect level (NOAEL). Adverse health effects could potentially occur at any blood Pb level (EA, 2009; ATDSR, 2007; USEPA, 1988). Therefore, it is arguable that no amount of Pb exposure can be regarded as safe based on available research to date.

Elevated Pb in the environment is attributed to a number of human activities and industrial processes such as fuel combustion, mining, agricultural slurry spreading, and incineration of municipal wastes (Alloway, 2013; Nriagu & Pacyna, 1989). The reported natural abundance of Pb in the Earth’s crust ranges from 12 - 14 mg kg\(^{-1}\) (Rose et al., 1979; Lee & Yao, 1970; Krauskopf, 1967; Taylor, 1964), although globally reported normal background concentrations (NBC) in soil can substantially vary. The United States Environmental Protection Agency (USEPA) suggests natural Pb concentrations in the soils in United States range from 50 to 400 mg kg\(^{-1}\) (USEPA, 2013). The Canadian Council of Ministers of the Environment (CCME) provides a mean range of 12 – 25 mg kg\(^{-1}\) for Canadian Soils (CCME, 1999). The average reported concentration in rural soils in the United Kingdom (UK) is 52.6 mg kg\(^{-1}\), ranging from as low as 2.6 to as high as 713 mg kg\(^{-1}\) (EA, 2007). In Northern Ireland (NI), Jordan et al. (2001) reported a mean total Pb soil concentration of 23.2 mg kg\(^{-1}\). More recently, the Tellus Geochemical Survey of NI measured a higher average total Pb concentration of 41.7 mg kg\(^{-1}\), with a maximum extractable Pb concentration exceeding 3,000 mg kg\(^{-1}\) near the Belfast metropolitan area. In rural parts of NI, McIlwaine et al. (2014) reported a typical soil threshold value (TTV) for Pb of 63 mg kg\(^{-1}\).

Due to the global variability in Pb NBCs and also with regards to its non-threshold toxicity, identifying a starting point for contaminated land assessment in a human health context is challenging. The CCME provides a soil quality guideline of 140 mg kg\(^{-1}\) in a residential land use setting (CCME, 1999). Following its non-threshold toxicity classification, the generic Pb soil guideline value (SGV) (DEFRA & EA, 2002a) was withdrawn in the UK. Whilst a selection of provisional Category 4 screening levels (pC4SL) for Pb were recently published (Harries et al., 2013), final C4SLs have not
been issued for any soil contaminant. A C4SL denotes a lower tolerable limit for a contaminant in soil, beneath which human health risk is unlikely to be present.

Although Pb concentrations in the wider environment have declined since its removal from petrol in the last century, its ubiquitous anthropogenic presence still persists in soils, particularly around urban centres (Harries et al., 2013; Appleton et al., 2012a). Previous research worldwide has highlighted areas of elevated soil Pb concentrations outside of areas where geogenic associations are known to exist, including within the Republic of Ireland (ROI) and NI (Barsby et al., 2012; Bourennane et al., 2010; Jordan et al., 2007; Ljung et al., 2006; Zhang, 2006). Such findings demonstrate how anthropogenic pollution sources substantially contribute to elevated soil Pb concentrations. In NI Pb is found in highest total and extractable concentrations around the Belfast urban area and in soils overlying mineral deposits, with high soluble Pb measured in peaty upland areas (Jordan et al., 2001).

This latter observation may be accounted for by atmospheric deposition of anthropogenic Pb through rainfall, as precipitation is the primary moisture source in upland peat soils.

The large surface area and number of acidic functional groups that are common to peat make it an ideal substrate to bind trace elements either as sedimentary, deposited, particulate matter or as sorbed or complexed metal ions (Brown et al., 2000). The major sources of metals in the peat mass of ombrotrophic peat bogs has been shown to come from atmospheric precipitation (Steinnes & Friedland, 2006) which has been specifically illustrated in Ireland (Coggins et al., 2006). Whilst the ability of peat to accumulate trace metals has been well documented, there is little previous data on the bioaccessibility of trace elements such as Pb in peat rich soils.

Four Pb source domains were previously identified in NI accounting for elevated soil Pb concentrations (McIlwaine et al., 2014). A domain is an area where a distinguishable factor is recognised as controlling the concentration of an element. Urban, peat, granite and mineralisation Pb source domains were related to elevated concentrations of Pb, with typical threshold values (TTV) higher than the TTV calculated for the remaining rural domain. TTVs aim to identify the threshold between diffuse and point source anthropogenic contamination, thereby giving an indication of typical concentrations within defined geographical areas. Urban Pb source domains are likely to be directly attributable to anthropogenic activity. Some anthropogenic pollution sources are potentially more soluble in the environment and resultantly more bioavailable (Ljung et al., 2007; Appleton et al., 2012b), in turn posing a greater risk to human health.

Not all toxins that are rendered bioaccessible will be bioavailable, but in vitro bioaccessibility tests can better refine the contaminated land risk assessment process by reducing reliance on total soil contaminant concentrations. Such reliance may overestimate health risks (CIEH, 2009; Scheckel et
The Unified BARGE (Bioaccessibility Research Group of Europe) Method (UBM) is therefore a useful extraction method to employ in risk assessment scenarios where oral contaminant exposure is expected to contribute to toxic health effects. The UBM is a robust soil extraction technique that measures *in vitro* the oral bioaccessibility of contaminants by mimicking the conditions of the human stomach and upper intestine (BARGE/INERIS, 2010). The method has been validated for Pb, arsenic and cadmium using *in vivo* swine data (Denys *et al*., 2012; Caboche, 2009) and has also been subjected to global inter-laboratory trials (Wragg *et al*., 2011). Data obtained from UBM extractions provide an indication of what fraction of a contaminant may be solubilised in the gastro-intestinal (GI) tract (the bioaccessible portion) and therefore potentially available for absorption resulting in toxic health effects (the bioavailable portion).

The aim of this research was to measure the oral bioaccessibility of Pb in soil and attribute findings to different Pb sources through solubility estimation and source domain identification. This aim was met through 1) exploratory geochemistry data analysis (EDA) to identify areas of elevated soil Pb concentrations and examine associated spatial structures, 2) comparison of total and extractable Pb concentrations to estimate Pb solubility and 3) source domain identification to determine whether elevated Pb concentrations are the result of geogenic or anthropogenic processes. Lastly, measured oral bioaccessibility was compared across the identified Pb source domains.

2. Methodology and Study Area

2.1 Study Area

The study area is located in the UK and Ireland, consisting of NI and neighbouring County (Co.) Monaghan in ROI (Fig. 1). The estimated cumulative population of NI and Co. Monaghan is 1.9 million, with a low average population density of 130 per km² (ONS, 2013; CSO, 2011). Current and historical industrial activities, mainly concentrated around the Belfast metropolitan area, include textiles manufacturing, shipbuilding and aerospace engineering. In addition, quarrying is widespread throughout the region with active mines also present, particularly near the Antrim Glens in the northeast (Fig. 1; GSNI, 2014). Outside of the main urban areas of Belfast and Londonderry, land is largely rural and used for agricultural purposes, with metropolitan areas accounting for less than 4% of land use across the study area (European Environment Agency, 2012). As a result, the study area is often perceived to be relatively unspoiled from an anthropogenic pollution perspective (Zhang, 2006).

Soil types present in the study area include peats, humic and sand rankers, brown earths, podzols, mineral gleys and alluviums. Soil pH falls within a narrow acidic range of approximately 5.0 to 6.0.
(Jordan et al., 2001), with the NI Tellus geochemical survey more recently recording an average pH of 4.7. This decrease in pH over time suggests acidification of soils may be increasing in the study area. The climate is temperate and average annual rainfall ranges from a low of 800 mm in the eastern region to a high of over 1900 mm in the west. The Antrim Glens in the northeast, the Sperrin Mts. in the west and the granitic Mourne Mts. in the southeast intercept much of the precipitation borne by air currents which have travelled over the Atlantic Ocean, although the western half of the study area is most significantly affected by these Atlantic weather patterns (Met Office, 2012).

2.2 Geochemistry Data Analysis

Total and extractable Pb concentration data from the NI Tellus and Tellus Border geochemical surveys were provided by the Geological Survey of Northern Ireland (GSNI) and by the Geological Survey of Ireland (GSI), respectively. Rural NI Tellus Survey soil samples were collected on a 2 km² grid at depths of 5 – 20 cm (‘A’) and 35 – 50 cm (‘S’). ‘A’ samples were analysed for total Pb concentrations by X-ray fluorescence spectrometry (XRFS) and for extractable concentrations by inductively coupled plasma mass spectrometry (ICP-MS) following an aqua regia digest. ‘S’ NI Tellus Survey soil samples were also digested by aqua regia and analysed by ICP-MS. Tellus Border ‘A’ samples were collected on a 4 km² grid and analysed by ICP-MS following an aqua regia digest to yield extractable concentration data. Full analytical and field methods employed by these comprehensive regional geochemical surveys can be found in Smyth (2007) and Knights and Glennon (2013).

As part of this research, additional XRFS analysis was conducted at the British Geological Survey (BGS) Analytical Geochemistry Facility on a sub-set of 18 Tellus Border ‘A’ samples in Co. Monaghan according to the same methods described in the NI Tellus Survey methodology (Smyth, 2007). The additional XRFS data was required for solubility estimation and for calculation of UBM bioaccessible fractions (BAF) in Co. Monaghan. Geochemistry data were handled in SPSS v.19.0, R (R Core Team, 2013) and MS Excel 2010.

2.3 Geostatistical Analysis and Interpolation

Geostatistics and semi-variogram parameters were calculated in R with additional interpolation by ordinary kriging (OK) (Matheron, 1965) and inverse distance weighting (IDW) conducted in ArcMap 10.0 (ESRI, 2010) for illustrative purposes. The OK model yielding a mean prediction error closest to zero was selected as the final model for generating interpolated surfaces (Lloyd, 2010). Geostatistical outputs can be influenced by a nonparametric data distribution (Lloyd, 2010; Clarke, 2001; Einax &
Pb concentration data were therefore log-transformed prior to interpolation. OK models were checked for robustness using cross validation statistics and a visual assessment of the best fit semi-variogram using a maximum search neighbourhood of 12 nearest sample locations. A single Pb elemental component map is used to visually illustrate the initial data distribution. These maps are produced with awareness that, due to the compositional nature of geochemical data, single component maps represent only relative information that is inextricably linked to the relationship between one elemental component and other co-occurring elements (Pawlowsky-Glahn & Buccianti, 2011; Aitchison, 1986).

Semi-variogram parameters give an indication of the spatial structure that exists within a data set. This in turn can help explain geochemical or environmental processes that affect the spatial distributions of elements (Goulard & Voltz, 1992; McBratney et al., 1982). The semi-variogram sill \((C_1) \) is synonymous with the sample variance and represents the maximum variance that exists between measured sample values within the range of spatial correlation \((a) \). Beyond the distance \(a \), samples are no longer spatially correlated (Clarke, 2001; Gringarten & Deutsch, 2001). The nugget variance \((C_0) \) is attributed to micro-scale variance outside of sampling resolutions. Although the nugget effect is commonly regarded as an indication of measurement error or random semi-variogram behaviour, micro-scale processes which control element distributions may also be accounted for by the nugget variance. For example, Imrie et al. (2008) found that factors attributed to anthropogenic land use patterns were accounted for by a nugget effect. Dobermann et al. (1995) concluded buffalo excrement influenced soil chemistry over a range that occurred within the nugget variance. Functions with a high proportion of total variance \((C_0 + C_1) \) accounted for by the nugget variance may therefore be indicative of anthropogenic processes or land use behaviours which have significantly affected element distributions over shorter spatial scales than were detectable by the primary range \((a) \) of the function.

OK yields results which increase in accuracy in line with increasing sample numbers (Einax & Soldt, 1999). Due to fewer sample locations in the bioaccessibility data set than were available for extractable Pb concentration data, bioaccessible Pb concentrations were interpolated using IDW with a maximum search neighbourhood of five neighbouring sample locations. IDW is an exact interpolator (Lloyd, 2010) and this method therefore yielded a more accurate range of Pb bioaccessible concentration values across the interpolated surface.

2.4 Pb Solubility Estimation
A method for estimating element solubility in soil at a regional scale was applied to the NI Tellus and Tellus Border XRFS and ICP-MS data, similar to approaches used previously in Finland (Jarva et al., 2009) and Cyprus (Cohen et al., 2012). XRFS measures total element concentrations in soils whereas ICP concentrations rely on the antecedent aqua regia acid extraction. Although aqua regia acid is said to effectively leach many metals (Gill, 1997), the solubility of elements will affect how easily they are leached from the soil (Delgado et al., 2011). Therefore, by comparing the concentrations measured by the two methods, element solubility at a regional scale can be estimated. Elements which are more soluble in the environment generally exhibit higher oral bioaccessibility (Finžgar et al., 2007).

ICP extractable concentrations were plotted against XRFS total concentrations using the R statistical software package (R Core Team, 2013) to explore the relationship between the two analytical methods. The ratio of XRFS/ICP Pb concentrations was mapped by OK to illustrate geographical trends in Pb solubility. The classes on the map were defined by the boxplot classes method (McIlwaine et al., 2014) with an additional class added where the ratio was equal to one (where Pb concentrations measured by the two analytical methods were equal). Boxplot classifications retained the appropriate amount of detail to allow a direct comparison with the mapped bioaccessibility results.

2.5 Pb Domain Identification

Domains were previously identified for Pb in NI as described in McIlwaine et al. (2014). Total XRFS concentrations in shallow soils were mapped using empirical cumulative distribution function (ECDF) classes and compared to the main factors identified as controlling element concentrations—bedrock geology, superficial geology, land use classification and mineralisation. Elevated concentrations of Pb were attributed to urban, granite, mineralisation and peat source domains in NI with the remaining rural domain hosting lower Pb concentrations.

Additional Co. Monaghan data were included to identify Pb domains across the extent of the study area for this research. Bedrock geology data were obtained from the GSI 1:500,000 Bedrock Geology map (GSI, 2005). Superficial peat cover was identified using the Irish Environmental Protection Agency Soils and Subsoils Mapping Project data completed by Teagasc (Fealy & Green, 2009). The Corine land cover data (European Environment Agency, 2012) was used to identify urban and rural land use within the study area. Areas of known or suspected mineralisation in Co. Monaghan are identified in the Tellus Border prospectivity map (Coulter & Stinson, 2013).
Data used for identifying the mineralisation source domain in NI and Co. Monaghan relied upon prospectivity maps (Coulter & Stinson, 2013; Lusty et al., 2012) and not the locations of working or historic mines. The mineralisation domain and associated soil Pb is therefore regarded as geogenic and naturally occurring for the purposes of this research.

2.6 Oral In Vitro Bioaccessibility Testing

UBM extractions were carried out in 2009 (Barsby et al., 2012) and 2013 at the BGS Analytical Geochemistry Facility following the published method (BARGE/INERIS, 2010). The 2009 and 2013 data sets were joined to create a UBM data set of 163 samples for this research. Soil samples (< 2 mm fraction) were selected from the NI Tellus Survey and Tellus Border soil archives to cover a wide range of soil and underlying bedrock types present in the study area.

Standard BGS internal laboratory procedures were followed during UBM extraction and analysis according to UK Accreditation Service national laboratory requirements. Reagents were sourced by BGS from Merck, Sigma, Baker and Carl Roth. Saliva, gastric, duodenal and bile solutions were prepared one day prior to soil extractions to permit stabilisation. Solution pH was adjusted as required according to UBM specifications using either 37% HCl or 1M HNO₃ (Table 1). Soils not adhering to pH specifications (pH < 1.5) after one hour of gastric extraction were discarded and re-extracted at a later date.

Extracts were analysed by an Agilent 7500cx series ICP-MS employing an octopole reaction system in combination with a CETAC autosampler. The instrument was calibrated at the beginning of every analytical run using a minimum of three standards and one blank for each trace element. Multi-element quality control check standards were analysed at the start and end of each run and after every 25 samples at minimum.

One blank, one duplicate and one certified BGS102 reference soil (Wragg, 2009) were included in the extraction run for each of seven soils extracted. The BGS102 certificate of analysis provides certified UBM values for acceptable ranges of gastric (G) Pb concentrations. Average measured G Pb in reference soils was within one standard deviation of the certified BGS102 value. The mean relative per cent difference (RPD) for gastric Pb in study area soil samples was 8%. In the intestinal phase RPD was 14%. In line with the available BGS 102 certified reference value for G Pb, G data are presented in the following results as it is common practice to report the results yielding the highest bioaccessibility to ensure health risks are not underestimated. This approach also adheres to the precautionary principle advocated by UK contaminated land legislation and guidance (DEFRA,
Details of quality control for 2009 extractions are similar to the above and are described in detail in Barsby et al. (2012).

3. Results

3.1 Lead Soil Concentrations

The highest extractable Pb concentrations are found in soils along the northeast coast near the Antrim Glens, extending south into the Belfast metropolitan area and Ards Peninsula, with the occurrence of elevated Pb concentrations continuing along the southeast NI-Co. Monaghan border (Fig. 1, Fig. 2A). Peat soils overlying the Sperrin Mts. in the northwest also host elevated concentrations of Pb. It is this part of the study area that receives the most precipitation borne from Atlantic Ocean air currents (Met Office, 2012). The maximum measured extractable Pb concentration occurs near the Belfast metropolitan area (> 3000 mg kg\(^{-1}\)).

Although no SGV is currently available for Pb in the UK, Table 2 provides an overview of how Pb concentrations compare against historic withdrawn and current provisional soil screening criteria. Fig. 2B illustrates where extractable Pb concentrations exceed the lowest published pC4SL of 30 mg kg\(^{-1}\) by at least 10%. This criterion is applicable for a female child in an allotment setting (Harries et al., 2013). Pb concentrations were flagged as exceeding the pC4SL only where the concentration met or exceeded 33 mg kg\(^{-1}\) to ensure the measured Pb concentration was sufficiently above the pC4SL. Extractable Pb concentrations exceed the pC4SL at over 2,208 of 7,234 NI Tellus and Tellus Border soil sample locations in the study area (Fig. 2B). When total XRFS Pb concentrations are compared with the pC4SL, the number of occurrences where the screening criterion is exceeded increases to 2,629 (not illustrated).

Given the withdrawn and provisional nature of the Pb SGV and pC4SL, respectively, it would not be possible to assess the potential level of health risk from the values presented in Table 2 and Figs. 2A-B alone. Although Fig. 2B shows a geographically widespread occurrence of extractable Pb concentrations exceeding the lowest published pC4SL, it is important to note that individual sites must be assessed on a case by case basis taking relevant land use scenarios and all likely risk exposure pathways into account.

XRFS Pb concentrations were mapped previously by Barsby et al. (2012) and exhibit similar spatial patterns to extractable Pb concentrations. Extractable Pb concentrations are controlled by a spatial function with a moderate range (\(a\)) of 22.8 km. Short to medium range spatial functions are sometimes associated with processes that have a higher frequency of variation over short distances.
Such functions can be the result of smaller scale processes such as anthropogenic interactions with the environment, while long range functions capture the effects of larger scale geologic forming processes (Imrie et al., 2008; Dobermann et al., 1995). Pb exhibits a spatial structure in the study area that varies over a short scale in terms of its range relative to trace elements of known geogenic origin such as nickel or chromium which are controlled by longer range functions (> 70 km; McIlwaine et al., 2014; Barsby et al., 2012). The high proportion of nugget variance (63%) for Pb spatial distributions (Table 3) also suggests a high degree of micro-scale variation or spatial variability not detected by the primary range of the Pb function.

Fig. 3 illustrates the difference between Pb extractable concentrations in NI Tellus Survey ‘A’ soils and ‘S’ soils as measured by ICP-MS following an aqua regia digest. Pb is present at higher average and maximum concentrations in ‘A’ soils than ‘S’ soils. Anthropogenic and atmospheric Pb deposition to soil is expected to be most pronounced at surface level (‘A’).

3.2 Lead Solubility and Domain Identification

Figs. 4 and 5 illustrate comparative differences in Pb extractable and total concentrations. Such information can provide insight into contaminant sources. For example, geogenic metals are often highly insoluble and exhibit lower bioaccessibility (Cox et al., 2014) whilst anthropogenic pollution sources tend to be more soluble and more bioaccessible (Ljung et al., 2006).

Fig. 4 plots the relationship between XRFS and ICP Pb concentrations, with a 1-1 ratio represented by the dashed line shown on the scatterplot. Although soil analysis by XRFS detects an additional insoluble portion of Pb, the cluster of most points around the 1-1 line shows that a significant proportion of total Pb soil concentrations was detectable by ICP, with XRFS concentrations exceeding ICP concentrations by no more than 15%. This suggests the majority of Pb in soil is soluble and not encapsulated by an insoluble mineral matrix. Pb encapsulated by insoluble minerals generally displays decreased bioavailability and bioaccessibility (Ruby et al., 1999).

Fig. 5 illustrates the geographic variability in XRFS/ICP concentrations ratios. Higher levels of Pb solubility occur in the darker areas of the map, where the ratio is less than one. Where the map becomes lighter Pb is less soluble. Higher levels of solubility are observed along the central and western NI-ROI border and throughout the eastern coast. One area of higher solubility strongly aligns with an identified mineralisation source domain (Fig. 6A). Higher proportions of insoluble Pb occur in the southeast and northwest near the Mourne and Sperrin Mts., respectively. The Mourne Mts. comprise the granite source domain and the Sperrin Mts. aligning with the peat source domains.
Rural, peat and urban domains host moderately soluble portions of Pb. Although an elevated peat source domain was also identified in Fig. 6A, Pb solubility trends in Fig. 5 do not clearly align spatially with patterns illustrated for the peat source domain. Instead Pb solubility in peat is comparable to the intermediate solubility observed within urban source domains.

3.3 Lead Bioaccessibility

The results of UBM extractions are summarised in Table 4. G bioaccessibility was higher than GI bioaccessibility due to the lower pH of the G digestion which increases Pb mobility in solution (Denys et al., 2012; Farmer et al., 2011; Denys et al., 2007). The maximum G bioaccessible concentration was 199.8 mg kg\(^{-1}\), accounting for 68.6% of total Pb. The median G ICP-BAF was 40.3%, decreasing to 15.6% of extractable Pb concentrations in the GI phase. XRF-BAF values did not differ greatly from ICP-BAFs as a result of most Pb in soils in the study area being detectable by ICP-MS (Fig. 4). Pb gastric bioaccessibility exceeded 50% of total concentrations at 13 different soil locations across the study area (Fig. 6A).

Fig. 6A and Table 5 compare elevated Pb source domains with measured gastric oral bioaccessibility. Across the five source domains (inclusive of the rural domain), the mean ICP-BAF range was 35.6% - 46.4%. The highest maximum BAFs and the highest mean and maximum bioaccessible concentrations occurred in the mineralisation domain. Despite insoluble portions of Pb observed near the granite domain (Fig. 5), the highest average BAFs were measured in soils overlying this domain. Rural areas had the lowest mean and minimum bioaccessible Pb concentrations and the lowest average BAFs (Table 5). Urban domains accounted for the second highest maximum bioaccessible Pb concentrations, although peat and urban domains each hosted intermediate levels of bioaccessible Pb in general when compared to the other source domains (Table 5). Where small urban domains overlapped with the extent of the mineralisation domain, it was assumed mineralisation acted as the primary Pb source and samples were assigned to the mineralisation domain.

Despite the lower solubility of Pb in soils overlying the Sperrin Mts. (Fig. 5), Pb from the peat source domain present in this area is still moderately bioaccessible (Fig. 6A, Table 5). Similarities in Pb bioaccessibility between the peat and urban domains may suggest that bioaccessible Pb in these domains arises from similar sources, such as atmospheric deposition from urban or industrial emissions. Alternatively, this observation in peat may be coincidental and instead governed by the presence of dissolved organic matter, low pH and reducing conditions in peat soils that are conducive to higher levels of trace element mobility and bioaccessibility (Appleton et al., 2013; Palmer et al., 2013; Yang et al., 2003).
Regional trends in measured gastric bioaccessible Pb concentrations are illustrated by Fig. 6B. Higher levels of gastric bioaccessibility are present around the Belfast metropolitan area, along the extent of the NI-ROI border, and also along the northeast coast. In addition to a peat source domain immediately north of this latter coastal location, historical mining activity has occurred in this area (GSNI, 2014), although a Pb mineralisation domain is not present. Another area where measured bioaccessible Pb concentrations are high is south of Lough Neagh in proximity to an urban source domain. In general, observed spatial patterns in Pb bioaccessibility closely align with those observed for elevated Pb soil concentrations (Fig. 2A), areas of higher Pb solubility (Fig. 5) and also with mineralisation, urban, and peat Pb source domains (Fig. 6A). These findings may suggest that both diffuse anthropogenic and widespread geogenic Pb sources are capable of presenting health risks from the oral exposure pathway.

4. Discussion

Part IIA of the 1990 Environmental Protection Act (EPA 1990) outlines the statutory obligations in England, Wales and Scotland for risk assessing and, if required, remediating potentially contaminated areas of land. At the time of writing no cohesive contaminated land legislative framework has been officially adopted in NI or ROI for assessing potential risks to human health from existing land contamination. Instead, mitigation of potential risks is addressed during the planning and development process if permission is sought to change land use. Guidance on the NI Environment Agency (NIEA) web site directs users to English Environment Agency (EA) publications for use during the planning process as official adoption and enforcement locally of Part 3 of the enacted Waste and Contaminated Land Order (NI) 1997 has yet to occur (NIEA, 2010). The Irish Environmental Protection Agency (EPA) has recently put in place a framework for managing contaminated land at EPA licensed facilities (EPA, 2012), but has not yet developed a specific contaminated land legislative framework.

Toxic elements from some types of anthropogenic pollution may be more bioaccessible than those associated with geogenic sources due to the more soluble phases in which they exist in soil (Appleton et al., 2012b; Cave et al. 2007; Ljung et al., 2007; Cave et al. 2003), although this study also found that Pb attributed to geogenic sources displayed higher average BAFs than Pb from other source domains. Despite the knowledge that soluble and anthropogenic forms of pollution in the environment may be more likely to cause harm due to their increased bioavailability and bioaccessibility, sections 3.21 - 3.26 of the 2012 DEFRA guidance for Part IIA of EPA 1990 state that soils hosting widespread geogenic contamination or diffuse anthropogenic pollution should not be
regarded as contaminated land. The exception is where strong scientific evidence concludes that significant health risks are being caused or are likely to occur (DEFRA, 2012). This approach is not unique to the UK. For example, a similar regime is in place in Finland, where the 2007 Government Decree on the Assessment of Soil Contamination and Remediation Needs (Ministry of the Environment Finland, 2007) states that the assessment process shall regard natural geological concentrations and diffuse anthropogenic pollution as contributing to background concentrations (Jarva et al., 2010). However, such guidance may be misaligned with our knowledge concerning the health effects from oral Pb exposure in soil, particularly with regard to its non-threshold toxicity (ASTDR, 2007; USEPA, 1988). Gathering more evidence on other risk pathways for Pb exposure such as inhalation or edible crop uptake would help underpin with more certainty the potential health effects from exposure to low level diffuse anthropogenic pollution or widespread geogenic contamination.

The high solubility of Pb in surface soils and reduced Pb concentrations in deep soils in the study area suggests that a portion of elevated Pb concentrations is from diffuse anthropogenic pollution sources. This finding is supported by the observed spatial trends in Pb soil distributions where elevated concentrations align with urban and peat source domains. Upland peat soils are likely intercepting anthropogenic Pb carried in rainfall. The medium range spatial structure observed for extractable Pb concentrations also supports the conclusion that anthropogenic processes may be influencing or have historically influenced Pb soil concentrations. Bioaccessibility in the urban domain was higher than that observed in the remaining rural domain, demonstrating the anthropogenic effects of industrial activity and higher population densities over Pb distributions and associated possible health effects.

From an oral risk exposure standpoint, the region identified as a mineralisation domain hosted the highest concentrations of bioaccessible Pb. Although the granite domain accounted for lower maximum levels of bioaccessibility compared to the other domains, average BAFs were highest in soils overlying the granite domain. These findings suggesting that risk associated with geogenic sources of Pb should also be taken into consideration during the risk assessment process.

5. Conclusion

Combining existing knowledge surrounding non-threshold toxicity with the findings that Pb in the study area displays moderate to high solubility and oral bioaccessibility warrants more detailed risk evaluation for Pb in soil. The findings of this study should be taken into account during the future development of final Pb soil screening levels and the adoption of an Irish or Northern Irish contaminated land regime.
Conclusions regarding toxicity risks from oral soil Pb exposure can only be made on a site specific basis taking all exposure pathways and relevant land use scenarios into account. However, the findings of this research suggest that diffuse anthropogenic forms of pollution and the presence of natural geogenic contaminants should be considered more carefully in a human health risk context, particularly in the case of a non-threshold toxin such as Pb.

Acknowledgements

2013 UBM testing was supported by the EU INTERREG IVA-funded Tellus Border project. Tellus Border is a €5 million cross-border project to map the environment and natural resources in the border region of Ireland and continue the analysis of data in the border counties of Northern Ireland. It is a joint initiative between the Geological Survey of Northern Ireland, the Geological Survey of Ireland, Queen’s University Belfast and Dundalk Institute of Technology. The views and opinions expressed in this report do not necessarily reflect those of the European Commission or the SEUPB.

The Northern Ireland Tellus project was funded by the Northern Ireland Department of Enterprise, Trade and Investment and by the Rural Development Programme through the Northern Ireland Programme for Building Sustainable Prosperity.

Special thanks to staff at the Analytical Geochemistry Facility at the BGS Kingsley Dunham Centre, especially Mr. Tom Barlow and Mr. Elliott Hamilton for their invaluable technical and analytical support.

References

Environmental Protection Act 1990 (EPA 1990), Pt IIA, Contaminated Land.

