Dataset for "Metamaterial-Based LTCC Compressed Luneburg Lens Antenna at 60 GHz for Wireless Communications"

  • Dmitry Zelenchuk (Creator)
  • Vitalii Kirillov (Trinity College Dublin) (Contributor)
  • Irina Munina (Trinity College Dublin) (Contributor)
  • François Gallée (Creator)
  • Camilla Karnfelt (Contributor)



Dataset containing the data in the figures published in D. Zelenchuk, V. Kirillov, C. Kärnfelt, F. Gallée, and I. Munina, “Metamaterial-Based LTCC Compressed Luneburg Lens Antenna at 60 GHz for Wireless Communications,” Electronics, vol. 12, no. 11, p. 2354, May 2023, doi: 10.3390/electronics12112354. Note data files are in CSV format.

Abstract for paper: In this study, a metamaterial-based LTCC compressed Luneburg lens was designed, manufactured and measured. The lens was designed at 60 GHz to utilize the unlicensed mm-wave spectrum available for short-range high-capacity wireless communication networks. The transformation optics method was applied to ensure the compression of the Luneburg lens antenna and thus maintain a low-profile structure. The two different types of unit cells for low and high permittivity regions were considered. The parametric study of the effect of compression on lens performance was presented. The antenna is implemented with a standard high-permittivity LTCC process, and details of the manufacturing process for the metamaterial lens are discussed. The low-profile lens is thinner than 2 mm and measures 19 mm in diameter. A size reduction of 63.6% in comparison with a spherical lens was achieved. The near-field to far-field mm-wave measurement technique is presented, and the measurement results show a peak antenna gain of 16 dBi at 60 GHz and a beam-scanning capacity with 1 dB scan loss within a 50° field of view.
Date made available06 Jun 2023
PublisherQueen's University Belfast
Date of data production23 May 2023

Cite this