Accepting PhD Students

PhD projects

Title: Development of automated plasma accelerators with machine learning algorithms


Plasma accelerators have the potential to revolutionise particle accelerator technology due to their extremely high accelerating fields and short pulse durations. Harnessing data-driven algorithms to optimise plasma accelerators will enable them to reach their full potential by controlling the highly non-linear plasma physics at their core. This 4-year, fully funded PhD project will aim to build experimental tools for the automatic optimisation of plasma accelerators combining hands-on experimental work with the development of robust data handling, analysis, and modelling tools using cutting-edge machine learning algorithms.


The software tools developed during this project will include control of the properties of a high-power, ultra-short laser pulse and the plasma target with which it interacts. Real-time analysis of the experimental diagnostics will be used to build machine learning models of the accelerator performance, and then to guide the optimisation of the interaction to produce particle beams ideally suited to their applications. During the project, the student will join a team of international researchers to perform these experiments at facilities including Central Laser Facility near Oxford and new ZEUS laser at Michigan University.


The developments of this project will be used to enhance the utility of plasma accelerators at the Extreme Photonics Application Centre (EPAC), a newly constructed £82M STFC facility. The generated particle beams will be used for novel scientific and industrial applications such as ultra-fast x-ray spectroscopy and radiobiology, rapid x-ray tomography and gamma-ray imaging in collaboration with applications experts.


In addition to the code development and experiments, the PhD student will also travel to international schools and conferences (to share their results with the community through poster and oral presentations) and perform computer simulations to support experimental planning and data analysis. This PhD will provide the student with broad research experience and a suite of highly transferable skills for research and industry.


Location: Flexible between Queen's University Belfast and the UK Central Laser Facility (CLF) - at least one year to be spent at the CLF over the PhD duration.

20092024

Research activity per year

Personal profile

Research Focus

Dr. Streeter investigates the interaction of high power lasers with matter, particularly with the aim of developing plasma accelerators for a wide range of applications. He has pioneered the implementation of automation and machine learning in laser-plasma interactions, using Bayesian optimisation and neural networks to enhance the properties of the generated particle beams.

Expertise related to UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

  • SDG 3 - Good Health and Well-being

Fingerprint

Dive into the research topics where Matthew Streeter is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or