TY - JOUR
T1 - α-Adrenergic agonism enhances the growth hormone (GH) response to GH-releasing hormone through an inhibition of hypothalamic somatostatin release in normal men
AU - Devesa, J.
AU - Arce, V.
AU - Lois, N.
AU - Lima, L.
AU - Tresguerres, J.A.F.
N1 - Copyright 2007 Elsevier B.V., All rights reserved.
PY - 1990/12/1
Y1 - 1990/12/1
N2 - The purpose of this study was to investigate the precise mechanism by which central a-adrenergic pathways modulate GH secretion in humans. In 10 normal subjects we compared the pattern of clonidine-induced GH release to that elicited by GH-releasing hormone (GHRH) given at a time of presumably similar responsiveness of the somatotrope. We also evaluated the effect of stimulation by GHRH (either endogenous, by administration of clonidine, or exogenous) on the GH response to a further exogenous GHRH stimulation. In 2 experiments the administration of clonidine (0.150 mg, orally) at 0 or 60 min was followed by a GHRH [GRF-(1-29); 1 µg/kg, iv] challenge at 180 min. In other experiments subjects received on separate occasions placebo or clonidine at 0 min, followed by GHRH at 60 min and again at 180 min. In a further experiment the administration of clonidine at 0 min was followed by 2 GHRH challenges (60 and 180 min later). The administration of clonidine 60 or 120 min, but not 180 min, before the GHRH bolus significantly (P <0.01) increased the GH responses to this challenge compared to those elicited by GHRH when given after placebo in a period of a similar somatotrope responsiveness. These, in turn, were significantly (P <0.05) higher than those elicited by clonidine alone. The close relationship between pre-GHRH plasma GH values and GHRH-elicited GH peaks, not observed for clonidine, was lost after pretreatment with this drug. These data indicate that clonidine was able to disrupt the intrinsic hypothalamic-somatotroph rhythm, suggesting that a-adrenergic pathways have a major inhibitory effect on somatostatin release. Our data also indicate that GH responses to a GHRH bolus administered 120 min after a prior GHRH challenge are dependent on two parameters: the intrinsic hypothalamic-somatotroph rhythm at the time of the second GHRH bolus, and the magnitude of GH secretion elicited by the previous somatotroph stimulation. In summary, a-adrenergic agonism appears to act primarily in GH control by inhibiting the hypothalamic release of somatostatin, rather than by stimulating GHRH secretion.
AB - The purpose of this study was to investigate the precise mechanism by which central a-adrenergic pathways modulate GH secretion in humans. In 10 normal subjects we compared the pattern of clonidine-induced GH release to that elicited by GH-releasing hormone (GHRH) given at a time of presumably similar responsiveness of the somatotrope. We also evaluated the effect of stimulation by GHRH (either endogenous, by administration of clonidine, or exogenous) on the GH response to a further exogenous GHRH stimulation. In 2 experiments the administration of clonidine (0.150 mg, orally) at 0 or 60 min was followed by a GHRH [GRF-(1-29); 1 µg/kg, iv] challenge at 180 min. In other experiments subjects received on separate occasions placebo or clonidine at 0 min, followed by GHRH at 60 min and again at 180 min. In a further experiment the administration of clonidine at 0 min was followed by 2 GHRH challenges (60 and 180 min later). The administration of clonidine 60 or 120 min, but not 180 min, before the GHRH bolus significantly (P <0.01) increased the GH responses to this challenge compared to those elicited by GHRH when given after placebo in a period of a similar somatotrope responsiveness. These, in turn, were significantly (P <0.05) higher than those elicited by clonidine alone. The close relationship between pre-GHRH plasma GH values and GHRH-elicited GH peaks, not observed for clonidine, was lost after pretreatment with this drug. These data indicate that clonidine was able to disrupt the intrinsic hypothalamic-somatotroph rhythm, suggesting that a-adrenergic pathways have a major inhibitory effect on somatostatin release. Our data also indicate that GH responses to a GHRH bolus administered 120 min after a prior GHRH challenge are dependent on two parameters: the intrinsic hypothalamic-somatotroph rhythm at the time of the second GHRH bolus, and the magnitude of GH secretion elicited by the previous somatotroph stimulation. In summary, a-adrenergic agonism appears to act primarily in GH control by inhibiting the hypothalamic release of somatostatin, rather than by stimulating GHRH secretion.
UR - http://www.scopus.com/inward/record.url?partnerID=yv4JPVwI&eid=2-s2.0-0025633550&md5=c7e096e374d7c85e1cc30c4c4f8357d0
M3 - Article
AN - SCOPUS:0025633550
VL - 71
SP - 1581
EP - 1588
JO - The Journal of Clinical Endocrinology & Metabolism
JF - The Journal of Clinical Endocrinology & Metabolism
SN - 0021-972X
IS - 6
ER -