110th Anniversary: Comparison of Cavitation Devices Based on Linear and Swirling Flows: Hydrodynamic Characteristics

Research output: Contribution to journalArticle

Abstract

The interest in cavitating flow reactors has intensified recently, and a significant amount of research effort has been focused on demonstrating the potential applications of hydrodynamic cavitation. However, the knowledge base on the design of devices to optimize cavitation yield, performance, and industrial scalability remains lacking. It is essential to develop a sound understanding of the key hydrodynamic characteristics of cavitation devices to address these knowledge gaps. This work presents a comprehensive experimental and numerical investigation into the hydrodynamic behavior of cavitating devices that feature linear and swirling flows. Two of the most commonly utilized cavitation device geometries are studied, namely, orifice and Venturi, with and without swirl. These devices are compared to a high swirl flow device (vortex diode). A series of experimental configurations were designed with the aid of multiphase, unsteady computational fluid dynamics (CFD) simulations, to achieve matching power input, in terms of flow rate versus pressure drop across all five device configurations, allowing their cavitation characteristics to be directly compared on a consistent basis. High-speed flow visualization and detailed numerical predictions are presented that clearly describe the influence that key parameters, such as swirl ratio and Reynolds number, have on the nature of the observed cavitating flow structures. Cavitation inception conditions are described for each device, with Venturi and vortex devices shown to generate incipient cavitation at lower pressure ratios than orifice devices. Cavitation numbers are computed, which indicate that values of unity are obtained at inception across the range of devices, provided that appropriate characteristic velocities are defined. Swirl is identified as an important parameter in cavitation device design, with the swirling flow device designs shown to successfully move the cavitating region away from solid surfaces toward the device axis. Importantly, this is achieved without an energy consumption penalty; the results describe how swirl can be utilized to design devices that minimize or eliminate the risk of surface erosion.

LanguageEnglish
Pages14488-14509
Number of pages22
JournalIndustrial and Engineering Chemistry Research
Volume58
Issue number31
Early online date05 Jul 2019
DOIs
Publication statusPublished - 07 Aug 2019

Fingerprint

Swirling flow
Cavitation
Hydrodynamics
Orifices
Vortex flow
Flow structure
Flow visualization
Pressure drop
Scalability
Erosion
Computational fluid dynamics
Diodes
Reynolds number
Energy utilization
Flow rate
Acoustic waves
Geometry

Cite this

@article{56b7ed6d05504a908e94ab3a02336257,
title = "110th Anniversary: Comparison of Cavitation Devices Based on Linear and Swirling Flows: Hydrodynamic Characteristics",
abstract = "The interest in cavitating flow reactors has intensified recently, and a significant amount of research effort has been focused on demonstrating the potential applications of hydrodynamic cavitation. However, the knowledge base on the design of devices to optimize cavitation yield, performance, and industrial scalability remains lacking. It is essential to develop a sound understanding of the key hydrodynamic characteristics of cavitation devices to address these knowledge gaps. This work presents a comprehensive experimental and numerical investigation into the hydrodynamic behavior of cavitating devices that feature linear and swirling flows. Two of the most commonly utilized cavitation device geometries are studied, namely, orifice and Venturi, with and without swirl. These devices are compared to a high swirl flow device (vortex diode). A series of experimental configurations were designed with the aid of multiphase, unsteady computational fluid dynamics (CFD) simulations, to achieve matching power input, in terms of flow rate versus pressure drop across all five device configurations, allowing their cavitation characteristics to be directly compared on a consistent basis. High-speed flow visualization and detailed numerical predictions are presented that clearly describe the influence that key parameters, such as swirl ratio and Reynolds number, have on the nature of the observed cavitating flow structures. Cavitation inception conditions are described for each device, with Venturi and vortex devices shown to generate incipient cavitation at lower pressure ratios than orifice devices. Cavitation numbers are computed, which indicate that values of unity are obtained at inception across the range of devices, provided that appropriate characteristic velocities are defined. Swirl is identified as an important parameter in cavitation device design, with the swirling flow device designs shown to successfully move the cavitating region away from solid surfaces toward the device axis. Importantly, this is achieved without an energy consumption penalty; the results describe how swirl can be utilized to design devices that minimize or eliminate the risk of surface erosion.",
author = "Alister Simpson and Ranade, {Vivek V.}",
year = "2019",
month = "8",
day = "7",
doi = "10.1021/acs.iecr.9b02757",
language = "English",
volume = "58",
pages = "14488--14509",
journal = "INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH",
issn = "0888-5885",
publisher = "American Chemical Society",
number = "31",

}

TY - JOUR

T1 - 110th Anniversary: Comparison of Cavitation Devices Based on Linear and Swirling Flows: Hydrodynamic Characteristics

AU - Simpson, Alister

AU - Ranade, Vivek V.

PY - 2019/8/7

Y1 - 2019/8/7

N2 - The interest in cavitating flow reactors has intensified recently, and a significant amount of research effort has been focused on demonstrating the potential applications of hydrodynamic cavitation. However, the knowledge base on the design of devices to optimize cavitation yield, performance, and industrial scalability remains lacking. It is essential to develop a sound understanding of the key hydrodynamic characteristics of cavitation devices to address these knowledge gaps. This work presents a comprehensive experimental and numerical investigation into the hydrodynamic behavior of cavitating devices that feature linear and swirling flows. Two of the most commonly utilized cavitation device geometries are studied, namely, orifice and Venturi, with and without swirl. These devices are compared to a high swirl flow device (vortex diode). A series of experimental configurations were designed with the aid of multiphase, unsteady computational fluid dynamics (CFD) simulations, to achieve matching power input, in terms of flow rate versus pressure drop across all five device configurations, allowing their cavitation characteristics to be directly compared on a consistent basis. High-speed flow visualization and detailed numerical predictions are presented that clearly describe the influence that key parameters, such as swirl ratio and Reynolds number, have on the nature of the observed cavitating flow structures. Cavitation inception conditions are described for each device, with Venturi and vortex devices shown to generate incipient cavitation at lower pressure ratios than orifice devices. Cavitation numbers are computed, which indicate that values of unity are obtained at inception across the range of devices, provided that appropriate characteristic velocities are defined. Swirl is identified as an important parameter in cavitation device design, with the swirling flow device designs shown to successfully move the cavitating region away from solid surfaces toward the device axis. Importantly, this is achieved without an energy consumption penalty; the results describe how swirl can be utilized to design devices that minimize or eliminate the risk of surface erosion.

AB - The interest in cavitating flow reactors has intensified recently, and a significant amount of research effort has been focused on demonstrating the potential applications of hydrodynamic cavitation. However, the knowledge base on the design of devices to optimize cavitation yield, performance, and industrial scalability remains lacking. It is essential to develop a sound understanding of the key hydrodynamic characteristics of cavitation devices to address these knowledge gaps. This work presents a comprehensive experimental and numerical investigation into the hydrodynamic behavior of cavitating devices that feature linear and swirling flows. Two of the most commonly utilized cavitation device geometries are studied, namely, orifice and Venturi, with and without swirl. These devices are compared to a high swirl flow device (vortex diode). A series of experimental configurations were designed with the aid of multiphase, unsteady computational fluid dynamics (CFD) simulations, to achieve matching power input, in terms of flow rate versus pressure drop across all five device configurations, allowing their cavitation characteristics to be directly compared on a consistent basis. High-speed flow visualization and detailed numerical predictions are presented that clearly describe the influence that key parameters, such as swirl ratio and Reynolds number, have on the nature of the observed cavitating flow structures. Cavitation inception conditions are described for each device, with Venturi and vortex devices shown to generate incipient cavitation at lower pressure ratios than orifice devices. Cavitation numbers are computed, which indicate that values of unity are obtained at inception across the range of devices, provided that appropriate characteristic velocities are defined. Swirl is identified as an important parameter in cavitation device design, with the swirling flow device designs shown to successfully move the cavitating region away from solid surfaces toward the device axis. Importantly, this is achieved without an energy consumption penalty; the results describe how swirl can be utilized to design devices that minimize or eliminate the risk of surface erosion.

UR - http://www.scopus.com/inward/record.url?scp=85071316950&partnerID=8YFLogxK

U2 - 10.1021/acs.iecr.9b02757

DO - 10.1021/acs.iecr.9b02757

M3 - Article

VL - 58

SP - 14488

EP - 14509

JO - INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH

T2 - INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH

JF - INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH

SN - 0888-5885

IS - 31

ER -