A Bias Compensated Cross-Relation approach to Thermocouple Characterisation

Philip D. Gillespie, Daniel Gaida, Peter C. Hung, Robert J. Kee, Seán F. McLoone

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
337 Downloads (Pure)


The measurement of fast changing temperature fluctuations is a challenging problem due to the inherent limited bandwidth of temperature sensors. This results in a measured signal that is a lagged and attenuated version of the input. Compensation can be performed provided an accurate, parameterised sensor model is available. However, to account for the influence of the measurement environment and changing conditions such as gas velocity, the model must be estimated in-situ. The cross-relation method of blind deconvolution is one approach for in-situ characterisation of sensors. However, a drawback with the method is that it becomes positively biased and unstable at high noise levels. In this paper, the cross-relation method is cast in the discrete-time domain and a bias compensation approach is developed. It is shown that the proposed compensation scheme is robust and yields unbiased estimates with lower estimation variance than the uncompensated version. All results are verified using Monte-Carlo simulations.

Original languageEnglish
Pages (from-to)43-48
Number of pages6
Issue number5
Publication statusPublished - 26 Jul 2016


  • Blind sensor characterisation
  • Cross-relation
  • Temperature measurement

ASJC Scopus subject areas

  • Control and Systems Engineering


Dive into the research topics of 'A Bias Compensated Cross-Relation approach to Thermocouple Characterisation'. Together they form a unique fingerprint.

Cite this