A critical evaluation of grid stability and codes, energy storage and smart loads in power systems with wind generation

Dlzar Al kez, Aoife Foley, Neil McIlwaine, D. John Morrow, Barry Hayes, Mustafa Alparslan Zehir, Laura Mehigan, Behnaz Papari, Chris S. Edrington, Mesut Baran

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)
151 Downloads (Pure)

Abstract

Existing power systems are facing new challenges in maintaining the security of the power system as the penetration of variable renewable energy technologies, such as variable speed wind turbines, increases. System non-synchronous generation replaces conventional generators as penetration of renewable increases. This affects system rotational inertia and limits the number of online thermal generators that can provide frequency stability services and system-wide areas voltage stability. This evolution has resulted in some changes to existing grid codes and new ancillary services. Furthermore, it could provide opportunities to address the security of the system utilizing modern smart technologies, e.g. smart loads, heat pumps, electric vehicles. The aim of this paper is to evaluate the impacts of large-scale renewable power generation on power system dynamics from the perspective of the power system operator. It focuses on the grid codes implications and challenges specifically. Synthetic inertia response opportunities from smart loads, electric vehicles, energy storage technologies and dispatching wind farms during frequency excursions are analyzed and thoroughly discussed. The key finding is that rethink in the development of grid code requirements and market mechanisms is needed if a power system based on 100% power electronic renewable generation is to be achieved. This type of power system would require a range of technologies to provide the types of ancillary services required, as none of the technologies alone can tackle all the challenges presented.
Original languageEnglish
Article number117671
JournalEnergy
DOIs
Publication statusPublished - 26 Apr 2020

Fingerprint

Dive into the research topics of 'A critical evaluation of grid stability and codes, energy storage and smart loads in power systems with wind generation'. Together they form a unique fingerprint.

Cite this