Abstract
One of the most critical aspects in the development of a kinetic model for automotive applications is the method used to control the switch between limiting factors over the period of the chemical reaction, namely mass transfer and reaction kinetics. This balance becomes increasingly more critical with the automotive application with the gas composition and gas flow varying throughout the automotive cycles resulting in a large number of competing reactions, with a constantly changing space velocity. A methodology is presented that successfully switches the limitation between mass transfer and reaction kinetics. This method originally developed for the global kinetics model using the Langmuir Hinshelwood approach for kinetics is presented. The methodology presented is further expanded to the much more complex micro-kinetics approach taking into account various kinetic steps such as adsorption/desorption and surface reactions. The dual kinetic model is then tested against experimental data from two lab reactors one using spatially resolved data and one using the conventional end pipe analysis.
Original language | English |
---|---|
DOIs | |
Publication status | Published - 01 Jan 2014 |
Event | SAE 2014 International Powertrains, Fuels and Lubricants Meeting, FFL 2014 - Birmingham, United Kingdom Duration: 20 Oct 2014 → 22 Oct 2014 |
Conference
Conference | SAE 2014 International Powertrains, Fuels and Lubricants Meeting, FFL 2014 |
---|---|
Country/Territory | United Kingdom |
City | Birmingham |
Period | 20/10/2014 → 22/10/2014 |
ASJC Scopus subject areas
- Automotive Engineering
- Safety, Risk, Reliability and Quality
- Pollution
- Industrial and Manufacturing Engineering