Abstract
Significant progress has been made in the field of visual Simultaneous Localization and Mapping (vSLAM) systems. However, the localization accuracy of vSLAM can be significantly reduced in dynamic applications with mobile robots or passengers. In this paper, a novel semantic SLAM framework in dynamic environments is proposed to improve the localization accuracy. We incorporate a semantic segmentation model into the Oriented FAST and Rotated BRIEF-SLAM2 (ORB-SLAM2) system to filter out dynamic feature points, but we encounter one main challenge, i.e. the performance of a segmentation network well-trained with labeled datasets may decrease seriously in a real application without any labeled data due to the inconsistency between the source domain and the target domain. Therefore, we proposed an unsupervised semantic segmentation model with a Residual Neural Network (ResNet) structure, which is trained by the adversarial transfer learning method in the multi-level feature spaces.
This work may be the first to perform multi-level feature space adversarial transfer learning for the semantic SLAM task in dynamic environments. In order to evaluate our method, images of indoor scenes from three datasets are used as the source domain, and the dynamic sequences of the TUM dataset are used as the target domain. The extensive experimental results show favorable performance against the state-of-the-art methods in terms of the absolute trajectory accuracy and image semantic segmentation quality.
This work may be the first to perform multi-level feature space adversarial transfer learning for the semantic SLAM task in dynamic environments. In order to evaluate our method, images of indoor scenes from three datasets are used as the source domain, and the dynamic sequences of the TUM dataset are used as the target domain. The extensive experimental results show favorable performance against the state-of-the-art methods in terms of the absolute trajectory accuracy and image semantic segmentation quality.
Original language | English |
---|---|
Article number | 106153 |
Number of pages | 17 |
Journal | Applied Soft Computing |
Volume | 90 |
Early online date | 03 Feb 2020 |
DOIs | |
Publication status | Published - 01 May 2020 |