A Role for Extracellular Vesicles in SARS-CoV-2 Therapeutics and Prevention

Jatin Machhi, Farah Shahjin, Srijanee Das, Milankumar Patel, Mai Mohamed Abdelmoaty, Jacob D. Cohen, Preet Amol Singh, Ashish Baldi, Neha Bajwa, Raj Kumar, Lalit K. Vora, Tapan A. Patel, Maxim D. Oleynikov, Dhruvkumar Soni, Pravin Yeapuri, Insiya Mukadam, Rajashree Chakraborty, Caroline G. Saksena, Jonathan Herskovitz, Mahmudul HasanDavid Oupicky, Suvarthi Das, Ryan F. Donnelly, Kenneth S. Hettie, Linda Chang, Howard E. Gendelman*, Bhavesh D. Kevadiya

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

2 Citations (Scopus)

Abstract

Extracellular vesicles (EVs) are the common designation for ectosomes, microparticles and microvesicles serving dominant roles in intercellular communication. Both viable and dying cells release EVs to the extracellular environment for transfer of cell, immune and infectious materials. Defined morphologically as lipid bi-layered structures EVs show molecular, biochemical, distribution, and entry mechanisms similar to viruses within cells and tissues. In recent years their functional capacities have been harnessed to deliver biomolecules and drugs and immunological agents to specific cells and organs of interest or disease. Interest in EVs as putative vaccines or drug delivery vehicles are substantial. The vesicles have properties of receptors nanoassembly on their surface. EVs can interact with specific immunocytes that include antigen presenting cells (dendritic cells and other mononuclear phagocytes) to elicit immune responses or affect tissue and cellular homeostasis or disease. Due to potential advantages like biocompatibility, biodegradation and efficient immune activation, EVs have gained attraction for the development of treatment or a vaccine system against the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection. In this review efforts to use EVs to contain SARS CoV-2 and affect the current viral pandemic are discussed. An emphasis is made on mesenchymal stem cell derived EVs’ as a vaccine candidate delivery system. 

Original languageEnglish
JournalJournal of Neuroimmune Pharmacology
Early online date05 Feb 2021
DOIs
Publication statusEarly online date - 05 Feb 2021

Bibliographical note

Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.

Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.

Keywords

  • Coronavirus disease 2019 (COVID-19)
  • Extracellular vesicles (EVs)
  • Mesenchymal stem cells (MSCs)
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

ASJC Scopus subject areas

  • Neuroscience (miscellaneous)
  • Immunology and Allergy
  • Immunology
  • Pharmacology

Fingerprint Dive into the research topics of 'A Role for Extracellular Vesicles in SARS-CoV-2 Therapeutics and Prevention'. Together they form a unique fingerprint.

Cite this