A Schamel equation for ion acoustic waves in superthermal plasmas

G. Williams, F. Verheest, M. A. Hellberg, M. G M Anowar, I. Kourakis

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u0. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation. 

Original languageEnglish
Article number092103
Number of pages11
JournalPhysics of Plasmas
Volume21
Issue number9
DOIs
Publication statusPublished - 2014

Fingerprint

ion acoustic waves
solitary waves
trapping
space laboratories
space plasmas
trapped particles
energetic particles
electron distribution
polarity
electrons
perturbation theory
distribution functions
propagation
pulses
excitation
ions

Cite this

Williams, G., Verheest, F., Hellberg, M. A., Anowar, M. G. M., & Kourakis, I. (2014). A Schamel equation for ion acoustic waves in superthermal plasmas. Physics of Plasmas, 21(9), [092103]. https://doi.org/10.1063/1.4894115
Williams, G. ; Verheest, F. ; Hellberg, M. A. ; Anowar, M. G M ; Kourakis, I. / A Schamel equation for ion acoustic waves in superthermal plasmas. In: Physics of Plasmas. 2014 ; Vol. 21, No. 9.
@article{b02e45c7aec542069f89b170df7ac1b7,
title = "A Schamel equation for ion acoustic waves in superthermal plasmas",
abstract = "An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u0. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation. ",
author = "G. Williams and F. Verheest and Hellberg, {M. A.} and Anowar, {M. G M} and I. Kourakis",
year = "2014",
doi = "10.1063/1.4894115",
language = "English",
volume = "21",
journal = "Physics of Plasmas",
issn = "1070-664X",
publisher = "American Institute of Physics",
number = "9",

}

Williams, G, Verheest, F, Hellberg, MA, Anowar, MGM & Kourakis, I 2014, 'A Schamel equation for ion acoustic waves in superthermal plasmas', Physics of Plasmas, vol. 21, no. 9, 092103. https://doi.org/10.1063/1.4894115

A Schamel equation for ion acoustic waves in superthermal plasmas. / Williams, G.; Verheest, F.; Hellberg, M. A.; Anowar, M. G M; Kourakis, I.

In: Physics of Plasmas, Vol. 21, No. 9, 092103, 2014.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A Schamel equation for ion acoustic waves in superthermal plasmas

AU - Williams, G.

AU - Verheest, F.

AU - Hellberg, M. A.

AU - Anowar, M. G M

AU - Kourakis, I.

PY - 2014

Y1 - 2014

N2 - An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u0. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation. 

AB - An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u0. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation. 

UR - http://www.scopus.com/inward/record.url?scp=84940340355&partnerID=8YFLogxK

U2 - 10.1063/1.4894115

DO - 10.1063/1.4894115

M3 - Article

AN - SCOPUS:84940340355

VL - 21

JO - Physics of Plasmas

JF - Physics of Plasmas

SN - 1070-664X

IS - 9

M1 - 092103

ER -

Williams G, Verheest F, Hellberg MA, Anowar MGM, Kourakis I. A Schamel equation for ion acoustic waves in superthermal plasmas. Physics of Plasmas. 2014;21(9). 092103. https://doi.org/10.1063/1.4894115