A simple disc wind model for broad absorption line quasars

N. Higginbottom, C. Knigge, K. S. Long, S. A. Sim, J. H. Matthews

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)
263 Downloads (Pure)


Approximately 20 per cent of quasi-stellar objects (QSOs) exhibit broad, blue-shifted absorption lines in their ultraviolet spectra. Such features provide clear evidence for significant outflows from these systems, most likely in the form of accretion disc winds. These winds may represent the ‘quasar’ mode of feedback that is often invoked in galaxy formation/evolution models, and they are also key to unification scenarios for active galactic nuclei (AGN) and QSOs. To test these ideas, we construct a simple benchmark model of an equatorial, biconical accretion disc wind in a QSO and use a Monte Carlo ionization/radiative transfer code to calculate the ultraviolet spectra as a function of viewing angle. We find that for plausible outflow parameters, sightlines looking directly into the wind cone do produce broad, blue-shifted absorption features in the transitions typically seen in broad absorption line (BAL) QSOs. However, our benchmark model is intrinsically X-ray weak in order to prevent overionization of the outflow, and the wind does not yet produce collisionally excited line emission at the level observed in non-BAL QSOs. As a first step towards addressing these shortcomings, we discuss the sensitivity of our results to changes in the assumed X-ray luminosity and mass-loss rate, Ṁwind. In the context of our adopted geometry, Ṁwind ∼ Ṁacc is required in order to produce significant BAL features. The kinetic luminosity and momentum carried by such outflows would be sufficient to provide significant feedback.
Original languageEnglish
Pages (from-to)1390-1407
Number of pages18
JournalMonthly Notices of the Royal Astronomical Society
Issue number2
Early online date28 Sep 2013
Publication statusPublished - 01 Dec 2013

Fingerprint Dive into the research topics of 'A simple disc wind model for broad absorption line quasars'. Together they form a unique fingerprint.

Cite this