TY - JOUR
T1 - A single parameter approach to enhance the microstructural and mechanical properties of beta Ti-Nb alloy via open-air fiber laser nitriding
AU - Chan, Chi Wai
AU - Chang, Xianwen
AU - Bozorgzadeh, Mohammad Amin
AU - Smith, Graham
AU - Lee, Seunghwan
PY - 2020/2/15
Y1 - 2020/2/15
N2 - In this study, the idea of applying open-air laser nitriding to improve the microstructural and mechanical properties of beta Ti-45 at.% Nb alloy was demonstrated. Surface cracking after laser nitriding is one of the main reasons impeding direct translation of the laser nitriding technique from the laboratories to industries as cracks can be the weak points to initiate mechanical and corrosion failures in long-term usage. With proper selection of duty cycle (DC) between 40% (modulated mode) and 100% (continuous wave, CW mode) to control the laser energy input and laser-material-gas interaction time, the cracking problems of laser nitriding can be alleviated and even solved. A crack-free and uniformly gold-coloured nitrided surface was successfully obtained at the DC of 40% in this study. The morphology, microstructure, composition and mechanical properties of the nitrided samples were studied and analysed by optical microscopy (OM), scanning electron microscopy (SEM), SEM-energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and Vickers micro-hardness tests. The OM results indicated that minimum overlapping between the laser tracks would give desirable results to obtain the crack-free surface. The measurements from the SEM micrographs indicated the depth of the laser-nitrided areas ranged between 22 and 43 μm. The XRD findings showed that a clear conversion of the TiNb surface to a nitride as a result of laser nitriding was observed. The maximum hardness, as measured by the Vickers method in cross-sections, lie in the range of 780 to 870 HV after laser nitriding. To summarise, control of DC to obtain a crack free and quality surface via fiber laser nitriding in open air is a simpler and quicker approach in comparison with the conventional substrate preheating and nitrogen (N) dilution approaches. The single-parameter approach is more efficient than parameter optimisation via design of experiments (DOE) employed in conventional methods.
AB - In this study, the idea of applying open-air laser nitriding to improve the microstructural and mechanical properties of beta Ti-45 at.% Nb alloy was demonstrated. Surface cracking after laser nitriding is one of the main reasons impeding direct translation of the laser nitriding technique from the laboratories to industries as cracks can be the weak points to initiate mechanical and corrosion failures in long-term usage. With proper selection of duty cycle (DC) between 40% (modulated mode) and 100% (continuous wave, CW mode) to control the laser energy input and laser-material-gas interaction time, the cracking problems of laser nitriding can be alleviated and even solved. A crack-free and uniformly gold-coloured nitrided surface was successfully obtained at the DC of 40% in this study. The morphology, microstructure, composition and mechanical properties of the nitrided samples were studied and analysed by optical microscopy (OM), scanning electron microscopy (SEM), SEM-energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and Vickers micro-hardness tests. The OM results indicated that minimum overlapping between the laser tracks would give desirable results to obtain the crack-free surface. The measurements from the SEM micrographs indicated the depth of the laser-nitrided areas ranged between 22 and 43 μm. The XRD findings showed that a clear conversion of the TiNb surface to a nitride as a result of laser nitriding was observed. The maximum hardness, as measured by the Vickers method in cross-sections, lie in the range of 780 to 870 HV after laser nitriding. To summarise, control of DC to obtain a crack free and quality surface via fiber laser nitriding in open air is a simpler and quicker approach in comparison with the conventional substrate preheating and nitrogen (N) dilution approaches. The single-parameter approach is more efficient than parameter optimisation via design of experiments (DOE) employed in conventional methods.
KW - Beta Ti-Nb alloys
KW - Laser nitriding
KW - Fiber laser
U2 - 10.1016/j.surfcoat.2019.125269
DO - 10.1016/j.surfcoat.2019.125269
M3 - Article
SN - 0257-8972
VL - 383
JO - Surface & Coatings Technology
JF - Surface & Coatings Technology
M1 - 125269
ER -