Abstract
Cloud computing has been widely adopted due to the flexibility in resource provisioning and on-demand pricing models. Entire clusters of Virtual Machines (VMs) can be dynamically provisioned to meet the computational demands of users. However, from a user's perspective, it is still challenging to utilise cloud resources efficiently. This is because an overwhelmingly wide variety of resource types with different prices and significant performance variations are available.
This paper presents a survey and taxonomy of existing research in optimising the execution of Bag-of-Task applications on cloud resources. A BoT application consists of multiple independent tasks, each of which can be executed by a VM in any order; these applications are widely used by both the scientific communities and commercial organisations. The objectives of this survey are as follows: (i) to provide the reader with a concise understanding of existing research on optimising the execution of BoT applications on the cloud, (ii) to define a taxonomy that categorises current frameworks to compare and contrast them, and (iii) to present current trends and future research directions in the area.
This paper presents a survey and taxonomy of existing research in optimising the execution of Bag-of-Task applications on cloud resources. A BoT application consists of multiple independent tasks, each of which can be executed by a VM in any order; these applications are widely used by both the scientific communities and commercial organisations. The objectives of this survey are as follows: (i) to provide the reader with a concise understanding of existing research on optimising the execution of BoT applications on the cloud, (ii) to define a taxonomy that categorises current frameworks to compare and contrast them, and (iii) to present current trends and future research directions in the area.
Original language | English |
---|---|
Pages (from-to) | 1-11 |
Journal | Future Generation Computing Systems |
Volume | 82 |
Early online date | 09 Dec 2017 |
DOIs | |
Publication status | Published - May 2018 |