A three-dimensional hierarchic finite element-based computational framework for the analysis of composite laminates

Zahur Ullah, Lukasz Kaczmarczyk, Chris Pearce

Research output: Contribution to journalArticle

Abstract

A three-dimensional hierarchic finite element-based computational framework is developed for the investigation of inter-laminar stresses and displacements in composite laminates of finite width. As compared to the standard finite elements, hierarchic finite elements allow to change the order of approximation both locally and globally without modifying the underlying finite element mesh leading to very accurate results for relatively coarse meshes. In this paper, both symmetric cross-ply and angle-ply laminates subjected to uniaxial tension are considered as test cases. Tetrahedral elements are used for the discretisation of laminates and uniform or global p-refinement is used to increase the order of approximation. Each ply within laminates is modelled as a linear-elastic, homogenous and orthotropic material. With increasing the order of approximation, the developed computational framework is able to capture the complex profiles of inter-laminar stresses and displacements very accurately. Results are compared with reference results from the literature and found in a very good agreement. The computational model is implemented in our in-house finite element software library Mesh-Oriented Finite Element Method (MoFEM). The computational framework has additional flexibly of high-performance computing and makes use of the state-of-the-art computational libraries including Portable, Extensible Toolkit for Scientific Computation (PETSc) and the Mesh-Oriented datABase (MOAB).
Original languageEnglish
JournalComposite Structures
DOIs
Publication statusAccepted - 17 Jan 2020

Fingerprint

Laminates
Composite materials
Finite element method

Cite this

@article{5c1c1840bf0b4567a1f364785ffd7311,
title = "A three-dimensional hierarchic finite element-based computational framework for the analysis of composite laminates",
abstract = "A three-dimensional hierarchic finite element-based computational framework is developed for the investigation of inter-laminar stresses and displacements in composite laminates of finite width. As compared to the standard finite elements, hierarchic finite elements allow to change the order of approximation both locally and globally without modifying the underlying finite element mesh leading to very accurate results for relatively coarse meshes. In this paper, both symmetric cross-ply and angle-ply laminates subjected to uniaxial tension are considered as test cases. Tetrahedral elements are used for the discretisation of laminates and uniform or global p-refinement is used to increase the order of approximation. Each ply within laminates is modelled as a linear-elastic, homogenous and orthotropic material. With increasing the order of approximation, the developed computational framework is able to capture the complex profiles of inter-laminar stresses and displacements very accurately. Results are compared with reference results from the literature and found in a very good agreement. The computational model is implemented in our in-house finite element software library Mesh-Oriented Finite Element Method (MoFEM). The computational framework has additional flexibly of high-performance computing and makes use of the state-of-the-art computational libraries including Portable, Extensible Toolkit for Scientific Computation (PETSc) and the Mesh-Oriented datABase (MOAB).",
author = "Zahur Ullah and Lukasz Kaczmarczyk and Chris Pearce",
year = "2020",
month = "1",
day = "17",
doi = "10.1016/j.compstruct.2020.111968",
language = "English",
journal = "Composite Structures",
issn = "0263-8223",
publisher = "Elsevier",

}

A three-dimensional hierarchic finite element-based computational framework for the analysis of composite laminates. / Ullah, Zahur; Kaczmarczyk, Lukasz; Pearce, Chris.

In: Composite Structures, 17.01.2020.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A three-dimensional hierarchic finite element-based computational framework for the analysis of composite laminates

AU - Ullah, Zahur

AU - Kaczmarczyk, Lukasz

AU - Pearce, Chris

PY - 2020/1/17

Y1 - 2020/1/17

N2 - A three-dimensional hierarchic finite element-based computational framework is developed for the investigation of inter-laminar stresses and displacements in composite laminates of finite width. As compared to the standard finite elements, hierarchic finite elements allow to change the order of approximation both locally and globally without modifying the underlying finite element mesh leading to very accurate results for relatively coarse meshes. In this paper, both symmetric cross-ply and angle-ply laminates subjected to uniaxial tension are considered as test cases. Tetrahedral elements are used for the discretisation of laminates and uniform or global p-refinement is used to increase the order of approximation. Each ply within laminates is modelled as a linear-elastic, homogenous and orthotropic material. With increasing the order of approximation, the developed computational framework is able to capture the complex profiles of inter-laminar stresses and displacements very accurately. Results are compared with reference results from the literature and found in a very good agreement. The computational model is implemented in our in-house finite element software library Mesh-Oriented Finite Element Method (MoFEM). The computational framework has additional flexibly of high-performance computing and makes use of the state-of-the-art computational libraries including Portable, Extensible Toolkit for Scientific Computation (PETSc) and the Mesh-Oriented datABase (MOAB).

AB - A three-dimensional hierarchic finite element-based computational framework is developed for the investigation of inter-laminar stresses and displacements in composite laminates of finite width. As compared to the standard finite elements, hierarchic finite elements allow to change the order of approximation both locally and globally without modifying the underlying finite element mesh leading to very accurate results for relatively coarse meshes. In this paper, both symmetric cross-ply and angle-ply laminates subjected to uniaxial tension are considered as test cases. Tetrahedral elements are used for the discretisation of laminates and uniform or global p-refinement is used to increase the order of approximation. Each ply within laminates is modelled as a linear-elastic, homogenous and orthotropic material. With increasing the order of approximation, the developed computational framework is able to capture the complex profiles of inter-laminar stresses and displacements very accurately. Results are compared with reference results from the literature and found in a very good agreement. The computational model is implemented in our in-house finite element software library Mesh-Oriented Finite Element Method (MoFEM). The computational framework has additional flexibly of high-performance computing and makes use of the state-of-the-art computational libraries including Portable, Extensible Toolkit for Scientific Computation (PETSc) and the Mesh-Oriented datABase (MOAB).

U2 - 10.1016/j.compstruct.2020.111968

DO - 10.1016/j.compstruct.2020.111968

M3 - Article

JO - Composite Structures

JF - Composite Structures

SN - 0263-8223

ER -