Additional pathways of sterol metabolism: Evidence from analysis of Cyp27a1-/- mouse brain and plasma

William J Griffiths, Peter J Crick, Anna Meljon, Spyridon Theofilopoulos, Jonas Abdel-Khalik, Eylan Yutuc, Josie E Parker, Diane E Kelly, Steven L Kelly, Ernest Arenas, Yuqin Wang

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)
122 Downloads (Pure)

Abstract

Cytochrome P450 (CYP) 27A1 is a key enzyme in both the acidic and neutral pathways of bile acid biosynthesis accepting cholesterol and ring-hydroxylated sterols as substrates introducing a (25R)26-hydroxy and ultimately a (25R)26-acid group to the sterol side-chain. In human, mutations in the CYP27A1 gene are the cause of the autosomal recessive disease cerebrotendinous xanthomatosis (CTX). Surprisingly, Cyp27a1 knockout mice (Cyp27a1-/-) do not present a CTX phenotype despite generating a similar global pattern of sterols. Using liquid chromatography - mass spectrometry and exploiting a charge-tagging approach for oxysterol analysis we identified over 50 cholesterol metabolites and precursors in the brain and circulation of Cyp27a1-/- mice. Notably, we identified (25R)26,7α- and (25S)26,7α-dihydroxy epimers of oxysterols and cholestenoic acids, indicating the presence of an additional sterol 26-hydroxylase in mouse. Importantly, our analysis also revealed elevated levels of 7α-hydroxycholest-4-en-3-one, which we found increased the number of oculomotor neurons in primary mouse brain cultures. 7α-Hydroxycholest-4-en-3-one is a ligand for the pregnane X receptor (PXR), activation of which is known to up-regulate the expression of CYP3A11, which we confirm has sterol 26-hydroxylase activity. This can explain the formation of (25R)26,7α- and (25S)26,7α-dihydroxy epimers of oxysterols and cholestenoic acids; the acid with the former stereochemistry is a liver X receptor (LXR) ligand that increases the number of oculomotor neurons in primary brain cultures. We hereby suggest that a lack of a motor neuron phenotype in some CTX patients and Cyp27a1-/- mice may involve increased levels of 7α-hydroxycholest-4-en-3-one and activation PXR, as well as increased levels of sterol 26-hydroxylase and the production of neuroprotective sterols capable of activating LXR.

Original languageEnglish
Pages (from-to)191-211
JournalBiochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids
Volume1864
Issue number2
Early online date22 Nov 2018
DOIs
Publication statusPublished - 01 Feb 2019
Externally publishedYes

Bibliographical note

Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

Fingerprint

Dive into the research topics of 'Additional pathways of sterol metabolism: Evidence from analysis of Cyp27a1-/- mouse brain and plasma'. Together they form a unique fingerprint.

Cite this