TY - JOUR
T1 - Adipose-derived human mesenchymal stem cells seeded on denuded or stromal sides of the amniotic membrane improve angiogenesis and collagen remodeling and accelerate healing of the full-thickness wound
AU - Moghimi, Vahid
AU - Rahvarian, Jeiran
AU - Esmaeilzadeh, Zohreh
AU - Mohammad-Pour, Najmeh
AU - Babaki, Danial
AU - Sadeghifar, Fatemeh
AU - Esfehani, Reza Jafarzadeh
AU - Bidkhori, Hamid Reza
AU - Roshan, Nema Mohamadian
AU - Momeni-Moghaddam, Madjid
AU - Naderi-Meshkin, Hojjat
PY - 2023/4/14
Y1 - 2023/4/14
N2 - Several strategies have been proposed to enhance wound healing results. Along with other forms of wound dressing, the human amniotic membrane (HAM) has long been regarded as a biological wound dressing that decreases infection and enhances healing. This study investigates the feasibility and effectiveness of wound healing using decellularized HAM (dAM) and stromal HAM (sAM) in combination with adipose-derived human mesenchymal stem cells (AdMSCs). The dAM and sAM sides of HAM were employed as wound dressing scaffolds, and AdMSCs were seeded on top of either dAM or sAM. Sixty healthy Wistar rats were randomly divided into three groups: untreated wound, dAM/AdMSCs group, and sAM/AdMSCs group. The gene expression of VEGF and COL-I was measured in vitro. Wound healing was examined after wounding on days 3, 7, 14, and 21. The expression level of VEGF was significantly higher in sAM/AdMSCs than dAM/AdMSCs (P ≤ 0.05), but there was no significant difference in COL-I expression (P ≥ 0.05). In vivo research revealed that on day 14, wounds treated with sAM/AdMSCs had more vascularization than wounds treated with dAM/AdMSCs (P ≤ 0.01) and untreated wound groups on days 7 (P ≤ 0.05) and 14 (P ≤ 0.0001), respectively. On days 14 (P < 0.05 for sAM/AdMSCs, P < 0.01 for dAM/AdMSCs), and 21 (P < 0.05 for sAM/AdMSCs, P < 0.01 for dAM/AdMSCs), the collagen deposition in the wound bed was significantly thicker in the sAM/AdMSCs and dAM/AdMSCs groups compared to untreated wounds. The study demonstrated that the combination of sAM and AdMSCs promotes wound healing by enhancing angiogenesis and collagen remodeling.
AB - Several strategies have been proposed to enhance wound healing results. Along with other forms of wound dressing, the human amniotic membrane (HAM) has long been regarded as a biological wound dressing that decreases infection and enhances healing. This study investigates the feasibility and effectiveness of wound healing using decellularized HAM (dAM) and stromal HAM (sAM) in combination with adipose-derived human mesenchymal stem cells (AdMSCs). The dAM and sAM sides of HAM were employed as wound dressing scaffolds, and AdMSCs were seeded on top of either dAM or sAM. Sixty healthy Wistar rats were randomly divided into three groups: untreated wound, dAM/AdMSCs group, and sAM/AdMSCs group. The gene expression of VEGF and COL-I was measured in vitro. Wound healing was examined after wounding on days 3, 7, 14, and 21. The expression level of VEGF was significantly higher in sAM/AdMSCs than dAM/AdMSCs (P ≤ 0.05), but there was no significant difference in COL-I expression (P ≥ 0.05). In vivo research revealed that on day 14, wounds treated with sAM/AdMSCs had more vascularization than wounds treated with dAM/AdMSCs (P ≤ 0.01) and untreated wound groups on days 7 (P ≤ 0.05) and 14 (P ≤ 0.0001), respectively. On days 14 (P < 0.05 for sAM/AdMSCs, P < 0.01 for dAM/AdMSCs), and 21 (P < 0.05 for sAM/AdMSCs, P < 0.01 for dAM/AdMSCs), the collagen deposition in the wound bed was significantly thicker in the sAM/AdMSCs and dAM/AdMSCs groups compared to untreated wounds. The study demonstrated that the combination of sAM and AdMSCs promotes wound healing by enhancing angiogenesis and collagen remodeling.
KW - Amnion
KW - Humans
KW - Mesenchymal Stem Cells
KW - Skin
KW - Vascular Endothelial Growth Factor A - genetics
KW - Mesenchymal stem cell
KW - Rats, Wistar
KW - Amniotic membrane
KW - Wound healing
KW - Wound Healing
KW - Collagen
KW - Burns
KW - Rats
KW - Animals
U2 - 10.1016/j.acthis.2023.152027
DO - 10.1016/j.acthis.2023.152027
M3 - Article
C2 - 37062121
SN - 0065-1281
VL - 125
JO - Acta Histochemica
JF - Acta Histochemica
IS - 3
M1 - 152027
ER -