Advanced educational parallel DSP system based on TMS320C25 processors

Fatih Kurugollu, H. Palaz, H. Gumuskaya, A.E. Harmanci, B. Orencik

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

This paper describes the design, application, and evaluation of a user friendly, flexible, scalable and inexpensive Advanced Educational Parallel (AdEPar) digital signal processing (DSP) system based on TMS320C25 digital processors to implement DSP algorithms. This system will be used in the DSP laboratory by graduate students to work on advanced topics such as developing parallel DSP algorithms. The graduating senior students who have gained some experience in DSP can also use the system. The DSP laboratory has proved to be a useful tool in the hands of the instructor to teach the mathematically oriented topics of DSP that are often difficult for students to grasp. The DSP laboratory with assigned projects has greatly improved the ability of the students to understand such complex topics as the fast Fourier transform algorithm, linear and circular convolution, the theory and design of infinite impulse response (IIR) and finite impulse response (FIR) filters. The user friendly PC software support of the AdEPar system makes it easy to develop DSP programs for students. This paper gives the architecture of the AdEPar DSP system. The communication between processors and the PC-DSP processor communication are explained. The parallel debugger kernels and the restrictions of the system are described. The programming in the AdEPar is explained, and two benchmarks (parallel FFT and DES) are presented to show the system performance.
Original languageEnglish
Pages (from-to)147-156
Number of pages10
JournalMicroprocessors and Microsystems
Volume19
DOIs
Publication statusPublished - Apr 1995

Fingerprint Dive into the research topics of 'Advanced educational parallel DSP system based on TMS320C25 processors'. Together they form a unique fingerprint.

Cite this