TY - GEN
T1 - An Explorative String-Bridge-Plate Model With Tunable Parameters
AU - Van Walstijn, Maarten
AU - Mehes, Sandor
PY - 2017/9/5
Y1 - 2017/9/5
N2 - The virtual exploration of the domain of mechano-acoustically produced sound and music is a long-held aspiration of physical modelling. A physics-based algorithm developed for this purpose combined with an interface can be referred to as a virtual-acoustic instrument; its design, formulation, implementation, and control are subject to a mix of technical and aesthetic criteria, including sonic complexity, versatility, modal accuracy, and computational efficiency. This paper reports on the development of one such system, based on simulating the vibrations of a string and a plate coupled via a (nonlinear) bridge element. Attention is given to formulating and implementing the numerical algorithm such that any of its parameters can be adjusted in real-time, thus facilitating musician-friendly exploration of the parameter space and offering novel possibilities regarding gestural control. Simulation results are presented exemplifying the sonic potential of the string-bridge-plate model (including bridge rattling and buzzing), and details regarding efficiency, real-time implementation and control interface development are discussed
AB - The virtual exploration of the domain of mechano-acoustically produced sound and music is a long-held aspiration of physical modelling. A physics-based algorithm developed for this purpose combined with an interface can be referred to as a virtual-acoustic instrument; its design, formulation, implementation, and control are subject to a mix of technical and aesthetic criteria, including sonic complexity, versatility, modal accuracy, and computational efficiency. This paper reports on the development of one such system, based on simulating the vibrations of a string and a plate coupled via a (nonlinear) bridge element. Attention is given to formulating and implementing the numerical algorithm such that any of its parameters can be adjusted in real-time, thus facilitating musician-friendly exploration of the parameter space and offering novel possibilities regarding gestural control. Simulation results are presented exemplifying the sonic potential of the string-bridge-plate model (including bridge rattling and buzzing), and details regarding efficiency, real-time implementation and control interface development are discussed
M3 - Conference contribution
SN - ISSN 2413-6700
SP - 291
EP - 298
BT - Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17)
CY - Edinburgh
ER -