An Inside Look at Sunspot Oscillations with Higher Azimuthal Wavenumbers

David B. Jess, Tom Van Doorsselaere, Gary Verth, Viktor Fedun, S. Krishna Sayamanthula, Robert Erdélyi, Peter H. Keys, Samuel D. T. Grant, Han Uitenbroek, Damian J. Christian

Research output: Contribution to journalArticlepeer-review

44 Citations (Scopus)
275 Downloads (Pure)

Abstract

Solar chromospheric observations of sunspot umbrae offer an exceptional view of magnetohydrodynamic wave phenomena. In recent years, a wealth of wave signatures related to propagating magneto-acoustic modes have been presented, which demonstrate complex spatial and temporal structuring of the wave components. Theoretical modeling has demonstrated how these ubiquitous waves are consistent with an m = 0 slow magneto-acoustic mode, which is excited by trapped sub-photospheric acoustic (p-mode) waves. However, the spectrum of umbral waves is broad, suggesting that the observed signatures represent the superposition of numerous frequencies and/or modes. We apply Fourier filtering, in both spatial and temporal domains, to extract chromospheric umbral wave characteristics consistent with an m = 1 slow magneto-acoustic mode. This identification has not been described before. Angular frequencies of 0.037 ± 0.007 rad/s (2.1 ± 0.4 deg/s, corresponding to a period ~170 s) for the m = 1 mode are uncovered for spatial wavenumbers in the range of 0.45 < k < 0.90 arcsec^-1 (5000−9000 km). Theoretical dispersion relations are solved, with corresponding eigenfunctions computed, which allows the density perturbations to be investigated and compared with our observations. Such magnetohydrodynamic modeling confirms our interpretation that the identified wave signatures are the first direct observations of an m = 1 slow magneto-acoustic mode in the chromospheric umbra of a sunspot.
Original languageEnglish
Article number59
Number of pages9
JournalThe Astrophysical Journal
Volume842
Issue number1
DOIs
Publication statusPublished - 10 Jun 2017

Keywords

  • Sun: chromosphere
  • Sun: magnetic fields
  • Sun: oscillations
  • Sun: photosphere
  • sunspots

Fingerprint

Dive into the research topics of 'An Inside Look at Sunspot Oscillations with Higher Azimuthal Wavenumbers'. Together they form a unique fingerprint.

Cite this