Analytical calculation of far infrared spectra of ice in terms of a molecular model

V.I. Gaiduk, B.M. Tseitlin, Derrick Crothers

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Wideband far infrared (FIR) spectra of complex permittivity e(p) of ice are calculated in terms of a simple analytical theory based on the method of dipolar autocorrelation functions. The molecular model represents a revision of the model recently presented for liquid water in Adv. Chem. Phys. 127 (2003) 65. A composite two-fractional model is proposed. The model is characterised by three phenomenological potential wells corresponding to the three FIR bands observed in ice. The first fraction comprises dipoles reorienting in a rather narrow and deep hat-like well; these dipoles generate the librational band centred at the frequency approximate to 880 cm(-1). The second fraction comprises elastically interacting particles; they generate two nearby bands placed around frequency 200 cm(-1). For description of one of these bands the harmonic oscillator (HO) model is used, in which translational oscillations of two charged molecules along the H-bond are considered. The other band is produced by the H-bond stretch, which governs hindered rotation of a rigid dipole. Such a motion and its dielectric response are described in terms of a new cut parabolic (CP) model applicable for any vibration amplitude. The composite hat-HO-CP model results in a smooth epsilon(nu) ice spectrum, which does not resemble the noise-like spectra of ice met in the known literature. The proposed theory satisfactorily agrees with the experimental ice spectrum measured at - 7 degrees C. The calculated longitudinal optic-transverse optic (LO-TO) splitting occurring at approximate to 250 cm(-1) qualitatively agrees with the measured data. (c) 2004 Elsevier B.V. All rights reserved.
Original languageEnglish
Pages (from-to)117-127
Number of pages11
JournalJournal of Molecular Structure
Volume738
Issue number1-3
Publication statusPublished - 14 Mar 2005

ASJC Scopus subject areas

  • Structural Biology
  • Organic Chemistry
  • Physical and Theoretical Chemistry
  • Spectroscopy
  • Materials Science (miscellaneous)
  • Atomic and Molecular Physics, and Optics

Fingerprint Dive into the research topics of 'Analytical calculation of far infrared spectra of ice in terms of a molecular model'. Together they form a unique fingerprint.

Cite this