TY - JOUR
T1 - Analyzing the performance/power tradeoff of the rCUDA middleware for future exascale systems
AU - Reaño, Carlos
AU - Prades, Javier
AU - Silla, Federico
PY - 2019/10
Y1 - 2019/10
N2 - The computing power of supercomputers and data centers has noticeably grown during the last decades at the cost of an ever increasing energy demand. The need for energy (and power) of these facilities has finally limited the evolution of high performance computing, making that many researchers are concerned not only about performance but also about energy efficiency. However, despite the many concerns about energy consumption, the search for computing power continues. In this regard, the research on exascale systems, able to deliver 1018 floating point operations per second, has reached a widely consensus that these systems should operate within a maximum power budget of 20 megawatts. Many efficiency improvements are necessary for achieving this goal. One of these improvements is the usage of ARM low-power processors, as the Mont-Blanc project proposes. In this paper we analyze the combined use of ARM processors with the rCUDA remote GPU virtualization middleware as a way to improve efficiency even more. Results show that it is possible to speed up applications by almost 8x while reducing energy consumption up to 35% when rCUDA is used to access high-end GPUs. These improvements are achieved while maintaining a feasible average power consumption level for future exascale systems.
AB - The computing power of supercomputers and data centers has noticeably grown during the last decades at the cost of an ever increasing energy demand. The need for energy (and power) of these facilities has finally limited the evolution of high performance computing, making that many researchers are concerned not only about performance but also about energy efficiency. However, despite the many concerns about energy consumption, the search for computing power continues. In this regard, the research on exascale systems, able to deliver 1018 floating point operations per second, has reached a widely consensus that these systems should operate within a maximum power budget of 20 megawatts. Many efficiency improvements are necessary for achieving this goal. One of these improvements is the usage of ARM low-power processors, as the Mont-Blanc project proposes. In this paper we analyze the combined use of ARM processors with the rCUDA remote GPU virtualization middleware as a way to improve efficiency even more. Results show that it is possible to speed up applications by almost 8x while reducing energy consumption up to 35% when rCUDA is used to access high-end GPUs. These improvements are achieved while maintaining a feasible average power consumption level for future exascale systems.
UR - http://www.mendeley.com/research/analyzing-performancepower-tradeoff-rcuda-middleware-future-exascale-systems
U2 - 10.1016/j.jpdc.2019.04.021
DO - 10.1016/j.jpdc.2019.04.021
M3 - Article
SN - 0743-7315
VL - 132
SP - 344
EP - 362
JO - Journal of Parallel and Distributed Computing
JF - Journal of Parallel and Distributed Computing
ER -