Application of 1H-NMR Metabolomics for the Discovery of Blood Plasma Biomarkers of a Mediterranean Diet

Research output: Contribution to journalArticle

40 Downloads (Pure)

Abstract

The Mediterranean diet (MD) is a dietary pattern well-known for its benefits in disease prevention. Monitoring adherence to the MD could be improved by discovery of novel dietary biomarkers. The MEDiterranean Diet in Northern Ireland (MEDDINI) intervention study monitored the adherence of participants to the MD for up to 12 months. This investigation aimed to profile plasma metabolites, correlating each against the MD score of participants (n = 58). Based on an established 14-point scale MD score, subjects were classified into two groups ("low" and "high"). 1H-Nuclear Magnetic Resonance (1H-NMR) metabolomic analysis found that citric acid was the most significant metabolite (p = 5.99 × 10-4*; q = 0.03), differing between 'low' and 'high'. Furthermore, five additional metabolites significantly differed (p < 0.05; q < 0.35) between the two groups. Discriminatory metabolites included: citric acid, pyruvic acid, betaine, mannose, acetic acid and myo-inositol. Additionally, the top five most influential metabolites in multivariate models were also citric acid, pyruvic acid, betaine, mannose and myo-inositol. Metabolites significantly correlated with the consumption of certain food types. For example, citric acid positively correlated fruit, fruit juice and vegetable constituents of the diet, and negatively correlated with sweet foods alone or when combined with carbonated drinks. Citric acid was the best performing biomarker and this was enhanced by paired ratio with pyruvic acid. The present study demonstrates the utility of metabolomic profiling for effectively assessing adherence to MD and the discovery of novel dietary biomarkers.

Original languageEnglish
Article number201
Number of pages14
JournalMetabolites
Volume9
Issue number10
DOIs
Publication statusPublished - 27 Sep 2019

Fingerprint

Mediterranean Diet
Metabolomics
Biomarkers
Nutrition
Blood
Magnetic Resonance Spectroscopy
Metabolites
Nuclear magnetic resonance
Citric Acid
Plasmas
Pyruvic Acid
Betaine
Inositol
Mannose
Carbonated Beverages
Food
Northern Ireland
Fruit juices
Vegetables
Acetic Acid

Cite this

@article{121b8ecdf12e4e829807dfe4cfbd7a68,
title = "Application of 1H-NMR Metabolomics for the Discovery of Blood Plasma Biomarkers of a Mediterranean Diet",
abstract = "The Mediterranean diet (MD) is a dietary pattern well-known for its benefits in disease prevention. Monitoring adherence to the MD could be improved by discovery of novel dietary biomarkers. The MEDiterranean Diet in Northern Ireland (MEDDINI) intervention study monitored the adherence of participants to the MD for up to 12 months. This investigation aimed to profile plasma metabolites, correlating each against the MD score of participants (n = 58). Based on an established 14-point scale MD score, subjects were classified into two groups ({"}low{"} and {"}high{"}). 1H-Nuclear Magnetic Resonance (1H-NMR) metabolomic analysis found that citric acid was the most significant metabolite (p = 5.99 × 10-4*; q = 0.03), differing between 'low' and 'high'. Furthermore, five additional metabolites significantly differed (p < 0.05; q < 0.35) between the two groups. Discriminatory metabolites included: citric acid, pyruvic acid, betaine, mannose, acetic acid and myo-inositol. Additionally, the top five most influential metabolites in multivariate models were also citric acid, pyruvic acid, betaine, mannose and myo-inositol. Metabolites significantly correlated with the consumption of certain food types. For example, citric acid positively correlated fruit, fruit juice and vegetable constituents of the diet, and negatively correlated with sweet foods alone or when combined with carbonated drinks. Citric acid was the best performing biomarker and this was enhanced by paired ratio with pyruvic acid. The present study demonstrates the utility of metabolomic profiling for effectively assessing adherence to MD and the discovery of novel dietary biomarkers.",
author = "Shirin Macias and Joseph Kirma and Ali Yilmaz and Moore, {Sarah E} and McKinley, {Michelle C} and McKeown, {Pascal P} and Woodside, {Jayne V} and Graham, {Stewart F} and Green, {Brian D}",
year = "2019",
month = "9",
day = "27",
doi = "10.3390/metabo9100201",
language = "English",
volume = "9",
journal = "Metabolites",
issn = "2218-1989",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "10",

}

TY - JOUR

T1 - Application of 1H-NMR Metabolomics for the Discovery of Blood Plasma Biomarkers of a Mediterranean Diet

AU - Macias, Shirin

AU - Kirma, Joseph

AU - Yilmaz, Ali

AU - Moore, Sarah E

AU - McKinley, Michelle C

AU - McKeown, Pascal P

AU - Woodside, Jayne V

AU - Graham, Stewart F

AU - Green, Brian D

PY - 2019/9/27

Y1 - 2019/9/27

N2 - The Mediterranean diet (MD) is a dietary pattern well-known for its benefits in disease prevention. Monitoring adherence to the MD could be improved by discovery of novel dietary biomarkers. The MEDiterranean Diet in Northern Ireland (MEDDINI) intervention study monitored the adherence of participants to the MD for up to 12 months. This investigation aimed to profile plasma metabolites, correlating each against the MD score of participants (n = 58). Based on an established 14-point scale MD score, subjects were classified into two groups ("low" and "high"). 1H-Nuclear Magnetic Resonance (1H-NMR) metabolomic analysis found that citric acid was the most significant metabolite (p = 5.99 × 10-4*; q = 0.03), differing between 'low' and 'high'. Furthermore, five additional metabolites significantly differed (p < 0.05; q < 0.35) between the two groups. Discriminatory metabolites included: citric acid, pyruvic acid, betaine, mannose, acetic acid and myo-inositol. Additionally, the top five most influential metabolites in multivariate models were also citric acid, pyruvic acid, betaine, mannose and myo-inositol. Metabolites significantly correlated with the consumption of certain food types. For example, citric acid positively correlated fruit, fruit juice and vegetable constituents of the diet, and negatively correlated with sweet foods alone or when combined with carbonated drinks. Citric acid was the best performing biomarker and this was enhanced by paired ratio with pyruvic acid. The present study demonstrates the utility of metabolomic profiling for effectively assessing adherence to MD and the discovery of novel dietary biomarkers.

AB - The Mediterranean diet (MD) is a dietary pattern well-known for its benefits in disease prevention. Monitoring adherence to the MD could be improved by discovery of novel dietary biomarkers. The MEDiterranean Diet in Northern Ireland (MEDDINI) intervention study monitored the adherence of participants to the MD for up to 12 months. This investigation aimed to profile plasma metabolites, correlating each against the MD score of participants (n = 58). Based on an established 14-point scale MD score, subjects were classified into two groups ("low" and "high"). 1H-Nuclear Magnetic Resonance (1H-NMR) metabolomic analysis found that citric acid was the most significant metabolite (p = 5.99 × 10-4*; q = 0.03), differing between 'low' and 'high'. Furthermore, five additional metabolites significantly differed (p < 0.05; q < 0.35) between the two groups. Discriminatory metabolites included: citric acid, pyruvic acid, betaine, mannose, acetic acid and myo-inositol. Additionally, the top five most influential metabolites in multivariate models were also citric acid, pyruvic acid, betaine, mannose and myo-inositol. Metabolites significantly correlated with the consumption of certain food types. For example, citric acid positively correlated fruit, fruit juice and vegetable constituents of the diet, and negatively correlated with sweet foods alone or when combined with carbonated drinks. Citric acid was the best performing biomarker and this was enhanced by paired ratio with pyruvic acid. The present study demonstrates the utility of metabolomic profiling for effectively assessing adherence to MD and the discovery of novel dietary biomarkers.

U2 - 10.3390/metabo9100201

DO - 10.3390/metabo9100201

M3 - Article

C2 - 31569638

VL - 9

JO - Metabolites

JF - Metabolites

SN - 2218-1989

IS - 10

M1 - 201

ER -