Abstract
Computer systems deployed in hospital environments, particularly physiological and biochemical real-time monitoring of patients in an Intensive Care Unit (ICU) environment, routinely collect a large volume of data that can hold very useful information. However, the vast majority are either not stored and lost forever or are stored in digital archives and seldom re-examined. In recent years, there has been extensive work carried out by researchers utilizing Machine Learning (ML) and Artificial Intelligence (AI) techniques on these data streams, to predict and prevent disease states. Such work aims to improve patient outcomes, to decrease mortality rates and decrease hospital stays, and, more generally, to decrease healthcare costs.
This chapter reviews the state of the art in that field and reports on our own current research, with practicing clinicians, on improving ventilator weaning protocols and lung protective ventilation, using ML and AI methodologies for decision support, including but not limited to Neural Networks and Decision Trees. The chapter considers both the clinical and Computer Science aspects of the field. In addition, we look to the future and report how physiological data holds clinically important information to aid in decision support in the wider hospital environment.
This chapter reviews the state of the art in that field and reports on our own current research, with practicing clinicians, on improving ventilator weaning protocols and lung protective ventilation, using ML and AI methodologies for decision support, including but not limited to Neural Networks and Decision Trees. The chapter considers both the clinical and Computer Science aspects of the field. In addition, we look to the future and report how physiological data holds clinically important information to aid in decision support in the wider hospital environment.
Original language | English |
---|---|
Title of host publication | Technologies and applications for Big Data value |
Editors | Edward Curry, Sören Auer, Arne J. Berre, Andreas Metzger, Maria S. Perez, Sonja Zillner |
Publisher | Springer Cham |
Pages | 203-223 |
ISBN (Electronic) | 9783030783075 |
ISBN (Print) | 9783030783068, 9783030783099 |
DOIs | |
Publication status | Published - 29 Apr 2022 |
Fingerprint
Dive into the research topics of 'Applying AI to manage acute and chronic clinical conditions'. Together they form a unique fingerprint.Student theses
-
Predictive analytics in an intensive care unit by processing streams of physiological data in real-time
Author: Hagan, R., Dec 2022Supervisor: Gillan, C. (Supervisor), Spence, I. (Supervisor) & Shyamsundar, M. (Supervisor)
Student thesis: Doctoral Thesis › Doctor of Philosophy
File