Assessing the stretch-blow moulding FE simulation of PET over a large process window

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Injection stretch blow moulding has been extensively researched for numerous years and is a well-established method of forming thin-walled containers. This paper is concerned with validating the finite element analysis of the stretch-blow-moulding (SBM) process in an effort to progress the development of injection stretch blow moulding of poly(ethylene terephthalate). Extensive data was obtained experimentally over a wide process window accounting for material temperature, air flow rate and stretch-rod speed while capturing cavity pressure, stretch-rod reaction force, in-mould contact timing and material thickness distribution. This data was then used to assess the accuracy of the correlating FE simulation constructed using ABAQUS/Explicit solver and an appropriate user-defined viscoelastic material subroutine. Results reveal that the simulation was able to pick up the general trends of how the pressure, reaction force and in-mould contact timings vary with the variation in preform temperature and air flow rate. Trends in material thickness were also accurately predicted over the length of the bottle relative to the process conditions. The knowledge gained from these analyses provides insight into the mechanisms of bottle formation, subsequently improving the blow moulding simulation and potentially providing a reduction in production costs.

Original languageEnglish
Title of host publicationProceedings of the 20th International ESAFORM Conference on Material Forming (ESAFORM 2017)
EditorsDermot Brabazon, Inam Ul Ahad, Sumsun Naher
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735415805
DOIs
Publication statusPublished - 16 Oct 2017
Event20th International ESAFORM Conference on Material Forming, ESAFORM 2017 - Dublin, Ireland
Duration: 26 Apr 201728 Apr 2017

Publication series

NameAIP Conference Proceedings
Volume1896
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference20th International ESAFORM Conference on Material Forming, ESAFORM 2017
CountryIreland
CityDublin
Period26/04/201728/04/2017

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Assessing the stretch-blow moulding FE simulation of PET over a large process window'. Together they form a unique fingerprint.

Cite this