Abstract
The formation of interstitial PdCx nanoparticles (NPs) is investigated through DFT calculations. Insights on the mechanisms of carbidisation are obtained whilst the material's behaviour under conditions of increasing C-concentration is examined. Incorporation of C atoms in the Pd octahedral interstitial sites is occurring through the [111] facet with an activation energy barrier of 19.3–35.7 kJ mol−1 whilst migration through the [100] facet corresponds to higher activation energy barriers of 124.5–127.4 kJ mol−1. Furthermore, interstitial-type diffusion shows that C will preferentially migrate and reside at the octahedral interstitial sites in the subsurface region with limited mobility towards the core of the NP. For low C-concentrations, migration from the surface into the interstitial sites of the NPs is thermodynamically favored, resulting in the formation of interstitial carbide. Carbidisation reaction energies are exothermic up to 11–14% of C-concentration and slightly vary depending on the shape of the structure. The reaction mechanisms turn to endothermic for higher concentration levels showing that C will preferentially reside on the surface making the interstitial carbide formation unfavorable. As experimentally observed, our simulations confirm that there is a maximum concentration of C in Pd carbide NPs opening the way for further computational investigations on the activity of Pd carbides in directed catalysis.
Original language | English |
---|---|
Pages (from-to) | 5619-5626 |
Number of pages | 8 |
Journal | RSC Advances |
Volume | 13 |
Issue number | 9 |
DOIs | |
Publication status | Published - 14 Feb 2023 |
Keywords
- General Chemical Engineering
- General Chemistry