Automatic vetting of planet candidates from ground based surveys: Machine learning with NGTS

David J. Armstrong, Maximilian N. Günther, James McCormac, Alexis M. S. Smith, Daniel Bayliss, François Bouchy, Matthew R. Burleigh, Sarah Casewell, Philipp Eigmüller, Edward Gillen, Michael R. Goad, Simon T. Hodgkin, James S. Jenkins, Tom Louden, Lionel Metrailler, Don Pollacco, Katja Poppenhaeger, Didier Queloz, Liam Raynard, Heike RauerStéphane Udry, Simon R. Walker, Christopher A. Watson, Richard G. West, Peter J. Wheatley

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)
253 Downloads (Pure)

Fingerprint

Dive into the research topics of 'Automatic vetting of planet candidates from ground based surveys: Machine learning with NGTS'. Together they form a unique fingerprint.

Earth and Planetary Sciences