TY - JOUR
T1 - Badger Ecology, Bovine Tuberculosis, and Population Management: Lessons from the Island of Ireland
AU - Byrne, Andrew W.
AU - Allen, Adrian
AU - Ciuti, Simone
AU - Gormley, Eamonn
AU - Kelly, David J.
AU - Marks, Nikki J.
AU - Marples, Nicola M.
AU - Menzies, Fraser
AU - Montgomery, Ian
AU - Newman, Chris
AU - O’Hagan, Maria
AU - Reid, Neil
AU - Scantlebury, David M.
AU - Stuart, Peter
AU - Tsai, Ming-shan
PY - 2024/1/16
Y1 - 2024/1/16
N2 - The European badger, Meles meles, is an important wildlife host for Mycobacterium bovis and contributes to the epidemiology of bovine tuberculosis (bTB) in cattle in several countries. The control of zoonotic diseases, such as bTB, is a central component of global One-Health strategies. Such strategies are complicated by human–wildlife conflicts, particularly where wildlife reservoirs are legally protected. The contrasting objectives of disease management and wildlife conservation, therefore, can require significant investment in research to support evidence-based policies. In Britain and Ireland, for example, badgers are a legally protected species but are also subject to lethal control and vaccination for disease management. In this paper, we review recent (2012–2022) advances in research on this wildlife host on the island of Ireland, which is used to underpin national policies and identify research gaps. In recent years, significant advances in estimating key parameters related to badger management and population dynamics have been made, including estimating population abundance at varying scales (local, landscape, and national). Advances in tracking technology, integrated with mark-recapture and modelling tools, have provided significant insights into the movement ecology of badgers and their interactions with cattle. The adaptation of genetic technologies has improved our understanding of the transmission dynamics of M. bovis among different hosts. As a disease management strategy, the culling of badgers to control bTB has reduced badger densities significantly, although this is not considered a sustainable sole long-term solution to the problem of spillback infection. The recent development of vaccination strategies presents an additional approach to control the disease in wild populations. These types of interventions will require significant applied research to ensure they are sustainable and to maximise benefits. It is also expected that focused research efforts will improve human–wildlife coexistence in the context of the broader One-Health strategy.
AB - The European badger, Meles meles, is an important wildlife host for Mycobacterium bovis and contributes to the epidemiology of bovine tuberculosis (bTB) in cattle in several countries. The control of zoonotic diseases, such as bTB, is a central component of global One-Health strategies. Such strategies are complicated by human–wildlife conflicts, particularly where wildlife reservoirs are legally protected. The contrasting objectives of disease management and wildlife conservation, therefore, can require significant investment in research to support evidence-based policies. In Britain and Ireland, for example, badgers are a legally protected species but are also subject to lethal control and vaccination for disease management. In this paper, we review recent (2012–2022) advances in research on this wildlife host on the island of Ireland, which is used to underpin national policies and identify research gaps. In recent years, significant advances in estimating key parameters related to badger management and population dynamics have been made, including estimating population abundance at varying scales (local, landscape, and national). Advances in tracking technology, integrated with mark-recapture and modelling tools, have provided significant insights into the movement ecology of badgers and their interactions with cattle. The adaptation of genetic technologies has improved our understanding of the transmission dynamics of M. bovis among different hosts. As a disease management strategy, the culling of badgers to control bTB has reduced badger densities significantly, although this is not considered a sustainable sole long-term solution to the problem of spillback infection. The recent development of vaccination strategies presents an additional approach to control the disease in wild populations. These types of interventions will require significant applied research to ensure they are sustainable and to maximise benefits. It is also expected that focused research efforts will improve human–wildlife coexistence in the context of the broader One-Health strategy.
KW - General Veterinary
KW - General Immunology and Microbiology
KW - General Medicine
U2 - 10.1155/2024/8875146
DO - 10.1155/2024/8875146
M3 - Article
SN - 1865-1674
VL - 2024
JO - Transboundary and Emerging Diseases
JF - Transboundary and Emerging Diseases
M1 - 8875146
ER -