Abstract
The current-voltage-temperature characteristics of PtSi/p-Si Schottky barrier diodes were measured in the temperature range 60-115 K. Deviation of the ideality factor from unity below 80 K may be modelled using the so-called T-0 parameter with T-0 = 18 K. It is also shown that the curvature in the Richardson plots may be remedied by using the flatband rather than the zero-bias saturation current density. Physically, the departure from ideality is interpreted in terms of an inhomogeneous Schottky contact. Here we determine a mean barrier height at T = 0 K, phi(b)(-0) = 223 mV, with an (assumed) Gaussian distribution of standard deviation sigma(phi) = 12.5 mV. These data are correlated with the zero-bias barrier height, phi(j)(0) = 192 mV (at T = 90 K), the photoresponse barrier height, phi(ph) = 205 mV, and the flatband barrier height, phi(fb) = 214 mV. Finally, the temperature coefficient of the flatband barrier was found to be -0.121 mV K-1, which is approximately equal to 1/2(dE(g)(i)/dT), thus suggesting that the Fermi level at the interface is pinned to the middle of the band gap.
Original language | English |
---|---|
Pages (from-to) | 583-592 |
Number of pages | 10 |
Journal | Solid State Electronics |
Volume | 39 |
Issue number | 4 |
Publication status | Published - Apr 1996 |
Keywords
- SILICIDE-SILICON INTERFACES
- TEMPERATURE-DEPENDENCE
- N-TYPE
- HEIGHT
- INHOMOGENEITIES
- CONTACTS
- MECHANISMS
- ANOMALIES
- STATES