Abstract
Each successive generation of X-ray machines has opened up new frontiers in science, such as the first radiographs and the determination of the structure of DNA. State-of-the-art X-ray sources can now produce coherent high-brightness X-rays of greater than kiloelectronvolt energy and promise a new revolution in imaging complex systems on nanometre and femtosecond scales. Despite the demand, only a few dedicated synchrotron facilities exist worldwide, in part because of the size and cost of conventional (accelerator) technology 1 . Here we demonstrate the use of a new generation of laser-driven plasma accelerators 2 , which accelerate high-charge electron beams to high energy in short distances 3-5 , to produce directional, spatially coherent, intrinsically ultrafast beams of hard X-rays. This reduces the size of the synchrotron source from the tens of metres to the centimetre scale, simultaneously accelerating and wiggling the electron beam. The resulting X-ray source is 1,000 times brighter than previously reported plasma wigglers 6,7 and thus has the potential to facilitate a myriad of uses across the whole spectrum of light-source applications.
Original language | English |
---|---|
Pages (from-to) | 980-983 |
Number of pages | 4 |
Journal | Nature Physics |
Volume | 6 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 2010 |
Externally published | Yes |
ASJC Scopus subject areas
- General Physics and Astronomy