Broad-emission-line dominated hydrogen-rich luminous supernovae

P J Pessi, J P Anderson, G Folatelli, L Dessart, S González-Gaitán, A Möller, C P Gutiérrez, S Mattila, T M Reynolds, P Charalampopoulos, A V Filippenko, L Galbany, A Gal-Yam, M Gromadzki, D Hiramatsu, D A Howell, C Inserra, E Kankare, R Lunnan, L MartinezC McCully, N Meza, T E Müller-Bravo, M Nicholl, C Pellegrino, G Pignata, J Sollerman, B E Tucker, X Wang, D R Young

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
29 Downloads (Pure)

Abstract

Hydrogen-rich Type II supernovae (SNe II) are the most frequently observed class of core-collapse SNe (CCSNe). However, most studies that analyse large samples of SNe II lack events with absolute peak magnitudes brighter than −18.5 mag at rest-frame optical wavelengths. Thanks to modern surveys, the detected number of such luminous SNe II (LSNe II) is growing. There exist several mechanisms that could produce luminous SNe II. The most popular propose either the presence of a central engine (a magnetar gradually spinning down or a black hole accreting fallback material) or the interaction of supernova ejecta with circumstellar material (CSM) that turns kinetic energy into radiation energy. In this work, we study the light curves and spectral series of a small sample of six LSNe II that show peculiarities in their Hα profile, to attempt to understand the underlying powering mechanism. We favour an interaction scenario with CSM that is not dense enough to be optically thick to electron scattering on large scales — thus, no narrow emission lines are observed. This conclusion is based on the observed light curve (higher luminosity, fast decline, blue colours) and spectral features (lack of persistent narrow lines, broad Hα emission, lack of Hα absorption, weak or nonexistent metal lines) together with comparison to other luminous events available in the literature. We add to the growing evidence that transients powered by ejecta-CSM interaction do not necessarily display persistent narrow emission lines.
Original languageEnglish
Pages (from-to)5315-5340
Number of pages26
JournalMonthly Notices of the Royal Astronomical Society
Volume523
Issue number4
Early online date16 Jun 2023
DOIs
Publication statusPublished - Aug 2023

Keywords

  • Space and Planetary Science
  • Astronomy and Astrophysics

Fingerprint

Dive into the research topics of 'Broad-emission-line dominated hydrogen-rich luminous supernovae'. Together they form a unique fingerprint.

Cite this