Burkholderia multivorans survival and trafficking within macrophages

Crystal L Schmerk, Miguel A. Valvano

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Cystic fibrosis (CF) patients are at great risk of opportunistic lung infection, particularly by members of the Burkholderia cepacia complex (Bcc). This group of bacteria can cause damage to the lung tissue of infected patients and are very difficult to eradicate due to their high levels of antibiotic resistance. Though the highly virulent B. cenocepacia has been the focus of virulence research for the past decade, B. multivorans is emerging as the most prevalent Bcc species infecting CF patients in North America. Despite several studies detailing the intramacrophage trafficking and survival of B. cenocepacia, no such data exists for B. multivorans. Our results demonstrated that clinical CF isolates, C5568 and C0514, and an environmental B. multivorans isolate, ATCC17616, were able to replicate and survive within murine macrophages in a manner similar to B. cenocepacia K56-2. These strains were also able to survive but were unable to replicate within human THP-1 macrophages. Differences in macrophage uptake were observed among all three B. multivorans strains; these variances were attributed to major differences in O-antigen production. Unlike B. cenocepacia-containing vacuoles, which delay phagosomal maturation in murine macrophages by 6 h, all B. multivorans containing vacuoles co-localized with late endosome/lysosomal marker LAMP-1 and the lysosomal marker dextran within 2 h of uptake. Together, these results indicate that while both Bcc species are able to survive and replicate within macrophages, they utilize different intramacrophage survival strategies. To observe differences in virulence the strains were compared using the Galleria mellonella model. When compared to the B. multivorans strains tested, B. cenocepacia K56-2 is highly virulent in this model and killed all worms within 24 h when injected at 107 CFU. B. multivorans clinical isolates C5568 and C0514 were significantly more virulent than the soil isolate ATCC17616, which was avirulent, even when worms were injected with 107 CFU. These results suggest strain differences in the virulence of B. multivorans isolates.
Original languageEnglish
Pages (from-to)173-184
Number of pages12
JournalJournal of Medical Microbiology
Volume62
Issue numberPART 2
DOIs
Publication statusPublished - Feb 2012

ASJC Scopus subject areas

  • Microbiology (medical)
  • Microbiology

Fingerprint

Dive into the research topics of 'Burkholderia multivorans survival and trafficking within macrophages'. Together they form a unique fingerprint.

Cite this