Carbon nanotubes embedded in a polyimide foil for proton acceleration with a sub-ns laser

A. Mangione*, A. Picciotto, D. Margarone, A. Malinowska, A. Szydlowsky, A. Velyhan, J. Krasa, E. Tomarchio, F. Ganci

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

A series of thin films made of aligned carbon nanotubes (CNTs) embedded in a polyimide substrate was designed, fabricated and used for the first time to accelerate protons and C ions by interaction with a sub-nanosecond, high power laser beam (600 J energy and 300 ps pulse width) with peak intensity of about 3 × 1016 W/cm2 on target. Each target was 5 μm thick, and the composite material contained CNTs aligned in different directions in the substrate. The results obtained from the analysis of a Thomson Parabola spectrometer, and of the spots imprinted by ions on a series of PM355 nuclear track detectors, indicate high energies (up to 3 MeV for protons and 9 MeV for C ions) and a marked influence of the CNTs’ orientation on the produced proton beam current. An increase of the proton fluxes, more than two orders of magnitude, was recorded with the targets containing CNTs aligned parallel to the target normal, in comparison to the other targets. The presented experimental results demonstrate that the laser-driven proton beam flux can be increased using ad hoc designed targets (with embedded and aligned nanotubes) and sub-nanosecond laser pulses with moderate intensities and poor temporal contrast, thus in an acceleration regime very far from those typically investigated experimentally using relativistic intensities (>5 × 1018 W/cm2) and short laser pulses (10 fs to 10 ps).

Original languageEnglish
Article numberP07008
JournalJournal of Instrumentation
Volume16
Issue number7
DOIs
Publication statusPublished - 05 Jul 2021

Bibliographical note

Funding Information:
This work was supported by the Laserlab-Europe III (Project No. 284464) and by the Ministry of Education, Youth, and Sports of the Czech Republic through the project ?Advanced Research Using High- Intensity- Laser Produced Photons and Particles? (CZ.02.1.010.00.016_0190000789). The authors would like to mention Dr E. Krousky for his technical support during the experiments at the Institute of Plasma Physics of the ASCR, PALS laboratory, Prague (Cz).

Publisher Copyright:
© 2021 IOP Publishing Ltd and Sissa Medialab

Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.

Keywords

  • Electron beam (EBIS)); Manufacturing
  • Electron cyclotron resonance (ECR)
  • Ion sources (positive ions
  • Negative ions

ASJC Scopus subject areas

  • Mathematical Physics
  • Instrumentation

Fingerprint

Dive into the research topics of 'Carbon nanotubes embedded in a polyimide foil for proton acceleration with a sub-ns laser'. Together they form a unique fingerprint.

Cite this