Abstract
Cell migration plays a pivotal role in morphogenetic and pathogenetic processes. To achieve directional migration, cells must establish a front-to-rear axis of polarity. Here we show that components of the cadherin-catenin complex function to stabilize this front-rear polarity. Neural crest and glioblastoma cells undergo directional migration in vivo or in vitro. During this process, αE-catenin accumulated at lamellipodial membranes and then moved toward the rear with the support of a tyrosine-phosphorylated β-catenin. This relocating αE-catenin bound to p115RhoGEF, leading to gathering of active RhoA in front of the nucleus where myosin-IIB arcs assemble. When catenins or p115RhoGEF were removed, cells lost the polarized myosin-IIB assembly, as well as the capability for directional movement. These results suggest that, apart from its well-known function in cell adhesion, the β-catenin/αE-catenin complex regulates directional cell migration by restricting active RhoA to perinuclear regions and controlling myosin-IIB dynamics at these sites.
Original language | English |
---|---|
Pages (from-to) | 463-479.e5 |
Journal | Developmental Cell |
Volume | 43 |
Issue number | 4 |
Early online date | 02 Nov 2017 |
DOIs | |
Publication status | Published - 20 Nov 2017 |
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)