TY - GEN
T1 - Cell-Free Massive MIMO with OTFS Modulation: Power Control and Resource Allocation
AU - Mohammadi, Mohammad
AU - Ngo, Hien-Quoc
AU - Matthaiou, Michalis
PY - 2022/7/11
Y1 - 2022/7/11
N2 - We consider the downlink of cell-free massive multiple-input multiple-output (MIMO) systems with orthogonal time frequency space (OTFS) modulation. Two pilot-based channel estimation schemes, namely superimposed pilot-based (SP-CHE) and embedded pilot-based channel estimation (EP-CHE), are applied to estimate the channels at the access points (APs). The SP-CHE scheme superimposes low power pilots onto the data symbols in the delay-Doppler domain to avoid the spectral efficiency (SE) loss due to null guard intervals used in the EP-CHE scheme. In the case of SP-CHE scheme, we consider a max-min fairness optimization problem to jointly optimize the per-user pilot/data power allocation coefficients and per-AP power control coefficients. The complicated non-convex problem is then iteratively solved through two decoupled sub-problems. Moreover, a max-min fairness problem is cast for the EP-CHE scheme, where the optimization variables are the per-AP power control coefficients. Numerical results show that the proposed resource allocation approaches provide at most 42 and 5-fold increase in the 95%-likely per-user SE for the SP-CHE and EP-CHE scheme, respectively, compared with the uniform power control and in correlated shadowing fading channels.
AB - We consider the downlink of cell-free massive multiple-input multiple-output (MIMO) systems with orthogonal time frequency space (OTFS) modulation. Two pilot-based channel estimation schemes, namely superimposed pilot-based (SP-CHE) and embedded pilot-based channel estimation (EP-CHE), are applied to estimate the channels at the access points (APs). The SP-CHE scheme superimposes low power pilots onto the data symbols in the delay-Doppler domain to avoid the spectral efficiency (SE) loss due to null guard intervals used in the EP-CHE scheme. In the case of SP-CHE scheme, we consider a max-min fairness optimization problem to jointly optimize the per-user pilot/data power allocation coefficients and per-AP power control coefficients. The complicated non-convex problem is then iteratively solved through two decoupled sub-problems. Moreover, a max-min fairness problem is cast for the EP-CHE scheme, where the optimization variables are the per-AP power control coefficients. Numerical results show that the proposed resource allocation approaches provide at most 42 and 5-fold increase in the 95%-likely per-user SE for the SP-CHE and EP-CHE scheme, respectively, compared with the uniform power control and in correlated shadowing fading channels.
U2 - 10.1109/ICCWorkshops53468.2022.9814658
DO - 10.1109/ICCWorkshops53468.2022.9814658
M3 - Conference contribution
T3 - IEEE International Conference on Communications Workshops (ICC Workshops): Proceedings
BT - 2022 IEEE International Conference on Communications (ICC): Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
ER -