TY - JOUR
T1 - Channel estimation and user localization for IRS-assisted MIMO-OFDM systems
AU - Lin, Yuxing
AU - Jin, Shi
AU - Matthaiou, Michalis
AU - You, Xiaohu
PY - 2021/9/16
Y1 - 2021/9/16
N2 - We consider the channel estimation problem and the channel-based wireless applications in multiple-input multiple-output orthogonal frequency division multiplexing systems assisted by intelligent reconfigurable surfaces (IRSs). To obtain the necessary channel parameters, i.e., angles, delays and gains, for environment mapping and user localization, we propose a novel twin-IRS structure consisting of two IRS planes with a relative spatial rotation. We model the training signal from the user equipment to the base station via IRSs as a third-order canonical polyadic tensor with a maximal tensor rank equal to the number of IRS unit cells. We present four designs of IRS training coefficients, i.e., random, structured, grouping and sparse patterns, and analyze the corresponding uniqueness conditions of channel estimation. We extract the cascaded channel parameters by leveraging array signal processing and atomic norm denoising techniques. Based on the characteristics of the twin-IRS structures, we formulate a nonlinear equation system to exactly recover the multipath parameters by two efficient decoupling modes. We realize environment mapping and user localization based on the estimated channel parameters. Simulation results indicate that the proposed twin-IRS structure and estimation schemes can recover the channel state information with remarkable accuracy, thereby offering a centimeter-level resolution of user positioning.
AB - We consider the channel estimation problem and the channel-based wireless applications in multiple-input multiple-output orthogonal frequency division multiplexing systems assisted by intelligent reconfigurable surfaces (IRSs). To obtain the necessary channel parameters, i.e., angles, delays and gains, for environment mapping and user localization, we propose a novel twin-IRS structure consisting of two IRS planes with a relative spatial rotation. We model the training signal from the user equipment to the base station via IRSs as a third-order canonical polyadic tensor with a maximal tensor rank equal to the number of IRS unit cells. We present four designs of IRS training coefficients, i.e., random, structured, grouping and sparse patterns, and analyze the corresponding uniqueness conditions of channel estimation. We extract the cascaded channel parameters by leveraging array signal processing and atomic norm denoising techniques. Based on the characteristics of the twin-IRS structures, we formulate a nonlinear equation system to exactly recover the multipath parameters by two efficient decoupling modes. We realize environment mapping and user localization based on the estimated channel parameters. Simulation results indicate that the proposed twin-IRS structure and estimation schemes can recover the channel state information with remarkable accuracy, thereby offering a centimeter-level resolution of user positioning.
U2 - 10.1109/TWC.2021.3111176
DO - 10.1109/TWC.2021.3111176
M3 - Article
SN - 1536-1276
JO - IEEE Transactions on Wireless Communications
JF - IEEE Transactions on Wireless Communications
ER -