Abstract
Background and purpose
Radiomics is a rapidly evolving area of research that uses medical images to develop prognostic and predictive imaging biomarkers. In this study, we aimed to identify radiomics features correlated with longitudinal biomarkers in preclinical models of acute inflammatory and late fibrotic phenotypes following irradiation.
Materials and methods
Female C3H/HeN and C57BL6 mice were irradiated with 20 Gy targeting the upper lobe of the right lung under cone-beam computed tomography (CBCT) image-guidance. Blood samples and lung tissue were collected at baseline, weeks 1, 10 & 30 to assess changes in serum cytokines and histological biomarkers. The right lung was segmented on longitudinal CBCT scans using ITK-SNAP. Unfiltered and filtered (wavelet) radiomics features (n = 842) were extracted using PyRadiomics. Longitudinal changes were assessed by delta analysis and principal component analysis (PCA) was used to remove redundancy and identify clustering. Prediction of acute (week 1) and late responses (weeks 20 & 30) was performed through deep learning using the Random Forest Classifier (RFC) model.
Results
Radiomics features were identified that correlated with inflammatory and fibrotic phenotypes. Predictive features for fibrosis were detected from PCA at 10 weeks yet overt tissue density was not detectable until 30 weeks. RFC prediction models trained on 5 features were created for inflammation (AUC 0.88), early-detection of fibrosis (AUC 0.79) and established fibrosis (AUC 0.96).
Conclusions
This study demonstrates the application of deep learning radiomics to establish predictive models of acute and late lung injury. This approach supports the wider application of radiomics as a non-invasive tool for detection of radiation-induced lung complications.
Radiomics is a rapidly evolving area of research that uses medical images to develop prognostic and predictive imaging biomarkers. In this study, we aimed to identify radiomics features correlated with longitudinal biomarkers in preclinical models of acute inflammatory and late fibrotic phenotypes following irradiation.
Materials and methods
Female C3H/HeN and C57BL6 mice were irradiated with 20 Gy targeting the upper lobe of the right lung under cone-beam computed tomography (CBCT) image-guidance. Blood samples and lung tissue were collected at baseline, weeks 1, 10 & 30 to assess changes in serum cytokines and histological biomarkers. The right lung was segmented on longitudinal CBCT scans using ITK-SNAP. Unfiltered and filtered (wavelet) radiomics features (n = 842) were extracted using PyRadiomics. Longitudinal changes were assessed by delta analysis and principal component analysis (PCA) was used to remove redundancy and identify clustering. Prediction of acute (week 1) and late responses (weeks 20 & 30) was performed through deep learning using the Random Forest Classifier (RFC) model.
Results
Radiomics features were identified that correlated with inflammatory and fibrotic phenotypes. Predictive features for fibrosis were detected from PCA at 10 weeks yet overt tissue density was not detectable until 30 weeks. RFC prediction models trained on 5 features were created for inflammation (AUC 0.88), early-detection of fibrosis (AUC 0.79) and established fibrosis (AUC 0.96).
Conclusions
This study demonstrates the application of deep learning radiomics to establish predictive models of acute and late lung injury. This approach supports the wider application of radiomics as a non-invasive tool for detection of radiation-induced lung complications.
Original language | English |
---|---|
Article number | 110106 |
Number of pages | 9 |
Journal | Radiotherapy and Oncology |
Volume | 192 |
Early online date | 27 Jan 2024 |
DOIs | |
Publication status | Published - Mar 2024 |
Keywords
- imaging biomarkers
- preclinical models
- prediction models
- pulmonary fibrosis
- radiation pneumonitis
- radiomics
Fingerprint
Dive into the research topics of 'Characterisation of quantitative imaging biomarkers for inflammatory and fibrotic radiation-induced lung injuries using preclinical radiomics'. Together they form a unique fingerprint.Student theses
-
Targeting cellular metabolism to enhance radiotherapy response in KRASmutant non-small cell lung cancer
Mohamed-Smith, L. (Author), Butterworth, K. (Supervisor) & Kerr, E. (Supervisor), Dec 2024Student thesis: Doctoral Thesis › Doctor of Philosophy
File