Characterization of gas-liquid flows in stirred vessels using pressure and torque fluctuations

A. R. Khopkar, S. S. Panaskar, A. B. Pandit, V. V. Ranade*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


Gas-liquid flows in a stirred vessel exhibit different flow regimes and demonstrate complex interaction of transport processes with varying spatio-temporal scales. The knowledge of key space and time scales of fluid dynamics is important for designing and enhancing the performance of gas-liquid stirred reactor. The present study uses simple, robust, and nonintrusive experimental techniques (torque and pressure sensors)to characterize the fluid dynamics in a gas-liquid stirred vessel. Time series obtained from the pressure and torque sensors were analyzed to develop criteria for flow regime identification. Further analyses of torque and pressure time series were done to extract valuable information of different time scales of fluid dynamics. The detailed analysis of torque and wall pressure fluctuations provided not only an insight into the fluid dynamics but also a possible opportunity to on-line monitoring of gas-liquid flows in stirred vessel.

Original languageEnglish
Pages (from-to)3298-3311
Number of pages14
JournalIndustrial and Engineering Chemistry Research
Issue number9
Publication statusPublished - 27 Apr 2005
Externally publishedYes

ASJC Scopus subject areas

  • Polymers and Plastics
  • Environmental Science(all)
  • Chemical Engineering (miscellaneous)


Dive into the research topics of 'Characterization of gas-liquid flows in stirred vessels using pressure and torque fluctuations'. Together they form a unique fingerprint.

Cite this