Chemotaxis shapes the microscale organization of the ocean’s microbiome

Jean Baptiste Raina*, Bennett S. Lambert, Donovan H. Parks, Christian Rinke, Nachshon Siboni, Anna Bramucci, Martin Ostrowski, Brandon Signal, Adrian Lutz, Himasha Mendis, Francesco Rubino, Vicente I. Fernandez, Roman Stocker, Philip Hugenholtz, Gene W. Tyson, Justin R. Seymour

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

62 Citations (Scopus)

Abstract

The capacity of planktonic marine microorganisms to actively seek out and exploit microscale chemical hotspots has been widely theorized to affect ocean-basin scale biogeochemistry, but has never been examined comprehensively in situ among natural microbial communities. Here, using a field-based microfluidic platform to quantify the behavioural responses of marine bacteria and archaea, we observed significant levels of chemotaxis towards microscale hotspots of phytoplankton-derived dissolved organic matter (DOM) at a coastal field site across multiple deployments, spanning several months. Microscale metagenomics revealed that a wide diversity of marine prokaryotes, spanning 27 bacterial and 2 archaeal phyla, displayed chemotaxis towards microscale patches of DOM derived from ten globally distributed phytoplankton species. The distinct DOM composition of each phytoplankton species attracted phylogenetically and functionally discrete populations of bacteria and archaea, with 54% of chemotactic prokaryotes displaying highly specific responses to the DOM derived from only one or two phytoplankton species. Prokaryotes exhibiting chemotaxis towards phytoplankton-derived compounds were significantly enriched in the capacity to transport and metabolize specific phytoplankton-derived chemicals, and displayed enrichment in functions conducive to symbiotic relationships, including genes involved in the production of siderophores, B vitamins and growth-promoting hormones. Our findings demonstrate that the swimming behaviour of natural prokaryotic assemblages is governed by specific chemical cues, which dictate important biogeochemical transformation processes and the establishment of ecological interactions that structure the base of the marine food web.

Original languageEnglish
Pages (from-to)132-138
Number of pages7
JournalNature
Volume605
Issue number7908
Early online date20 Apr 2022
DOIs
Publication statusPublished - 05 May 2022
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Chemotaxis shapes the microscale organization of the ocean’s microbiome'. Together they form a unique fingerprint.

Cite this