TY - JOUR
T1 - Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions
AU - Zhao, Zhihu
AU - Tavoosidana, Gholamreza
AU - Sjölinder, Mikael
AU - Göndör, Anita
AU - Mariano, Piero
AU - Wang, Sha
AU - Kanduri, Chandrasekhar
AU - Lezcano, Magda
AU - Sandhu, Kuljeet Singh
AU - Singh, Umashankar
AU - Pant, Vinod
AU - Tiwari, Vijay
AU - Kurukuti, Sreenivasulu
AU - Ohlsson, Rolf
PY - 2006/11/23
Y1 - 2006/11/23
N2 - Accumulating evidence converges on the possibility that chromosomes interact with each other to regulate transcription in trans. To systematically explore the epigenetic dimension of such interactions, we devised a strategy termed circular chromosome conformation capture (4C). This approach involves a circularization step that enables high-throughput screening of physical interactions between chromosomes without a preconceived idea of the interacting partners. Here we identify 114 unique sequences from all autosomes, several of which interact primarily with the maternally inherited H19 imprinting control region. Imprinted domains were strongly overrepresented in the library of 4C sequences, further highlighting the epigenetic nature of these interactions. Moreover, we found that the direct interaction between differentially methylated regions was linked to epigenetic regulation of transcription in trans. Finally, the patterns of interactions specific to the maternal H19 imprinting control region underwent reprogramming during in vitro maturation of embryonic stem cells. These observations shed new light on development, cancer epigenetics and the evolution of imprinting.
AB - Accumulating evidence converges on the possibility that chromosomes interact with each other to regulate transcription in trans. To systematically explore the epigenetic dimension of such interactions, we devised a strategy termed circular chromosome conformation capture (4C). This approach involves a circularization step that enables high-throughput screening of physical interactions between chromosomes without a preconceived idea of the interacting partners. Here we identify 114 unique sequences from all autosomes, several of which interact primarily with the maternally inherited H19 imprinting control region. Imprinted domains were strongly overrepresented in the library of 4C sequences, further highlighting the epigenetic nature of these interactions. Moreover, we found that the direct interaction between differentially methylated regions was linked to epigenetic regulation of transcription in trans. Finally, the patterns of interactions specific to the maternal H19 imprinting control region underwent reprogramming during in vitro maturation of embryonic stem cells. These observations shed new light on development, cancer epigenetics and the evolution of imprinting.
UR - http://www.mendeley.com/research/circular-chromosome-conformation-capture-4c-uncovers-extensive-networks-epigenetically-regulated-int-2
U2 - 10.1038/ng1891
DO - 10.1038/ng1891
M3 - Article
C2 - 17033624
SN - 1061-4036
VL - 38
SP - 1341
EP - 1347
JO - Nature Genetics
JF - Nature Genetics
IS - 11
ER -