Abstract
The quantity and quality of spatial data are increasing rapidly. This is particularly evident in the case of movement data. Devices capable of accurately recording the position of moving entities have become ubiquitous and created an abundance of movement data. Valuable knowledge concerning processes occurring in the physical world can be extracted from these large movement data sets. Geovisual analytics offers powerful techniques to achieve this. This article describes a new geovisual analytics tool specifically designed for movement data. The tool features the classic space-time cube augmented with a novel clustering approach to identify common behaviour. These techniques were used to analyse pedestrian movement in a city environment which revealed the effectiveness of the tool for identifying spatiotemporal patterns.
Original language | English |
---|---|
Pages (from-to) | 85-98 |
Number of pages | 14 |
Journal | Annals of GIS |
Volume | 20 |
Issue number | 2 |
Early online date | 16 Apr 2014 |
DOIs | |
Publication status | Published - 2014 |
Keywords
- clustering
- geovisual analysis
- movement data analysis
- space-time cube
ASJC Scopus subject areas
- General Earth and Planetary Sciences
- Computer Science Applications