Abstract
The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multi-walled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity. Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification.
Original language | English |
---|---|
Pages (from-to) | 365-371 |
Number of pages | 7 |
Journal | Nano Letters |
Volume | 11 |
Issue number | 2 |
Early online date | 25 Jan 2011 |
DOIs | |
Publication status | Published - 09 Feb 2011 |
ASJC Scopus subject areas
- Condensed Matter Physics
- Bioengineering
- General Chemistry
- General Materials Science
- Mechanical Engineering