Compact and Provably Secure Lattice-Based Signatures in Hardware

Research output: Contribution to conferencePaperpeer-review

497 Downloads (Pure)


Lattice-based cryptography is a quantum-safe alternative to existing classical asymmetric cryptography, such as RSA and ECC, which may be vulnerable to future attacks in the event of the creation of a viable quantum computer. The efficiency of lattice-based cryptography has improved over recent years, but there has been relatively little investigation into hardware designs of digital signature schemes. In this paper, the first hardware design of the provably secure Ring-LWE digital signature scheme, Ring-TESLA, is presented, targeting a Xilinx Spartan-6 FPGA. The results better compactness of all previous lattice-based digital signature schemes in hardware, and can achieve between 104-785 signatures and 102-776 verifications per second.
Original languageEnglish
Number of pages4
Publication statusAccepted - 17 Feb 2017
EventIEEE International Symposium of Circuits and Systems - Baltimore, United States
Duration: 28 May 201731 May 2017


ConferenceIEEE International Symposium of Circuits and Systems
Abbreviated titleISCAS
Country/TerritoryUnited States
Internet address


  • lattice-based cryptography, digital signatures, postquantum cryptography, hardware security, FPGA

Cite this