Comparative grazing behaviour of lactating suckler cows of contrasting genetic merit and genotype

S. McCabe, N. McHugh, N.E. O'Connell, R. Prendiville

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

The objective of this study was to determine if differences in grazing behaviour exist between lactating suckler cows diverse in genetic merit for the national Irish Replacement index and of two contrasting genotypes. Data from 103 cows: 41 high and 62 low genetic merit, 43 beef and 60 beef x dairy (BDX) cows were available over a single grazing season in 2015. Milk yield, grass dry matter intake (GDMI), cow live weight (BW) and body condition score (BCS) were recorded during the experimental period, with subsequent measures of production efficiency extrapolated. Grazing behaviour data were recorded twice in conjunction with aforementioned measures, using Institute of Grassland and Environmental Research headset behaviour recorders. The effect of genotype and cow genetic merit during mid- and late-lactation on grazing behaviour phenotypes, milk yield, BW, BCS and GDMI were estimated using linear mixed models. Genetic merit had no significant effect on any production parameters investigated, with the exception that low genetic merit had a greater BCS than high genetic merit cows. Beef cows were heavier, had a greater BCS but produced less milk per day than BDX. The BDX cows produced more milk per 100 kg BW and per unit intake and had greater GDMI, intake per bite and rate of GDMI per 100 kg BW than beef cows. High genetic merit cows spent longer grazing and took more bites per day but had a lower rate of GDMI than low genetic merit cows, with the same trend found when expressed per unit of BW. High genetic merit cows spent longer grazing than low genetic merit cows when expressed on a per unit intake basis. Absolute rumination measures were similar across cow genotype and genetic merit. When expressed per unit BW, BDX cows spent longer ruminating per day compared to beef. However, on a per unit intake basis, beef cows ruminated longer and had more mastications than BDX. Intake per bite and rate of intake was positively correlated with GDMI per 100 kg BW. The current study implies that despite large differences in grazing behaviour between cows diverse in genetic merit, few differences were apparent in terms of production efficiency variables extrapolated. Conversely, differences in absolute grazing and ruminating behaviour measurements did not exist between beef cows of contrasting genotype. However, efficiency parameters investigated illustrate that BDX will subsequently convert herbage intake more efficiently to milk production.
Original languageEnglish
Pages (from-to)129-136
JournalLivestock Science
Volume220
Early online date04 Dec 2018
DOIs
Publication statusPublished - 01 Feb 2019

Fingerprint Dive into the research topics of 'Comparative grazing behaviour of lactating suckler cows of contrasting genetic merit and genotype'. Together they form a unique fingerprint.

Cite this