Competitive adsorptive removal of promazine and promethazine from wastewater using olive tree pruning biochar: operational parameters, kinetics, and equilibrium investigations

Marwa El-Azazy, Ahmed S. El-Shafie, Samer Fawzy, David W. Rooney, Ahmed I. Osman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)
37 Downloads (Pure)

Abstract

This research aims to remove two phenothiazines, promazine (PRO) and promethazine (PMT), from their individual and binary mixtures using olive tree pruning biochar (BC-OTPR). The impact of individual and combinatory effects of operational variables was evaluated for the first time using central composite design (CCD). Simultaneous removal of both drugs was maximized utilizing the composite desirability function. At low concentrations, the uptake of PRO and PMT from their individual solutions was achieved with high efficiency of 98.64%, 47.20 mg/g and 95.87%, 38.16 mg/g, respectively. No major differences in the removal capacity were observed for the binary mixtures. Characterization of BC-OTPR confirmed successful adsorption and showed that the OTPR surface was predominantly mesoporous. Equilibrium investigations revealed that the Langmuir isotherm model best describes the sorption of PRO/PMT from their individual solutions with maximum adsorption capacities of 640.7 and 346.95 mg/g, respectively. The sorption of PRO/PMT conforms to the pseudo-second-order kinetic model. Regeneration of the adsorbent surface was successfully done with desorption efficiencies of 94.06% and 98.54% for PRO and PMT, respectively, for six cycles.

Original languageEnglish
Pages (from-to)82387-82405
Number of pages19
JournalEnvironmental science and pollution research international
Volume30
Issue number34
Early online date16 Jun 2023
DOIs
Publication statusPublished - Jul 2023

Keywords

  • Central composite design (CCD)
  • Wastewater treatment
  • Phenothiazines
  • Olive tree pruning biochar
  • Binary mixture

Fingerprint

Dive into the research topics of 'Competitive adsorptive removal of promazine and promethazine from wastewater using olive tree pruning biochar: operational parameters, kinetics, and equilibrium investigations'. Together they form a unique fingerprint.

Cite this