Controlled tuning of the properties in optoelectronic self-sorted gels

Emily Cross, Stephen Sproules, Ralf Schweins, Emily Draper, Dave Adams*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)
6 Downloads (Pure)


Multicomponent supramolecular gels have great potential for optoelectronics. Ideally, we could control the self-assembly of multiple components across many length scales, from the primary assembled structures to how these are arranged in space. This would allow energy transfer between p-type and n-type fibers to be controlled. Usually, a single network is formed and analyzed. It is not clear how most networks could be modified, and certainly not how these might be differentiated. Here, we address both of these issues. We show how the different components in a multicomponent gel can be differentiated by small-angle neutron scattering using contrast-matching experiments. The rate of self-assembly can be used to vary the networks that are formed, leading directly to changes in the efficiency of electron transfer. The assembly kinetics can therefore be used to prepare different networks from the same primary …
Original languageEnglish
Pages (from-to)8667-8670
JournalJournal of the American Chemical Society (JACS)
Issue number28
Publication statusPublished - 26 Jun 2018

Fingerprint Dive into the research topics of 'Controlled tuning of the properties in optoelectronic self-sorted gels'. Together they form a unique fingerprint.

Cite this