Coordination via Advection Dynamics in Nanonetworks with Molecular Communication

Malcolm Egan, Trang C. Mai, Quang Duong, Marco Di Renzo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)


A key challenge in nanonetworking is to develop a means of coordinating a large number of nanoscale devices. Molecular communication has emerged as a promising technique to assist in the coordination problem. Devices in molecular communication systems- -once information molecules are released - are typically viewed as passive, not reacting chemically with the information molecules. While this is an accurate model in textit diffusion-limited links, it is not the only scenario. In particular, the dynamics of molecular communication systems are more generally governed by reaction- diffusion, where the reaction dynamics can also dominate. This leads to the notion of textit reaction-limited molecular communication systems, where the concentration profiles of information molecules and other chemical species depends largely on reaction kinetics. In this regime, the system can be approximated by a chemical reaction network. In this paper, we exploit this observation to design new protocols for both point-to-point links with feedback and networks for event detection. In particular, using connections between consensus and advection theory and reaction networks lead to simple characterizations of equilibrium concentrations, which yield simple - but accurate - design rules even for networks with a large number of devices.

Original languageEnglish
Title of host publicationIEEE International Communications Conference (ICC 2018): Proceedings
Place of PublicationKansas City, USA
Number of pages6
Publication statusPublished - 31 Jul 2018

Publication series

NameIEEE International Conference on Communications (ICC): Proceedings
ISSN (Electronic)1938-1883


Dive into the research topics of 'Coordination via Advection Dynamics in Nanonetworks with Molecular Communication'. Together they form a unique fingerprint.

Cite this