Corneal biomechanics, refractive error, and axial length in Chinese primary school children.

Huang Y, Huang C, Li L, Qiu K, Gong W, Wang Z, Wu X, Du Y, Chen B, Lam DS, Zhang M, Congdon N.

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)


PURPOSE: Low corneal hysteresis is associated with longer axial length in Chinese secondary school children. The authors sought to explore this association in primary school children. METHODS: LogMAR presenting visual acuity, cycloplegic refractive error, ocular biometry, central corneal thickness (CCT), and corneal hysteresis (CH) was assessed for children in grades 1 to 3 at an academically competitive urban school in Shantou, China. RESULTS: Among 872 eligible children (mean age, 8.6 ± 2.1 years), 651 (74.7%) completed the examination. Among 1299 examined eyes, 111 (8.5%) had uncorrected vision ≤6/12. Mean spherical equivalent refractive error for all eyes was +0.26 ± 1.41 D, and axial length (AL) was 22.7 ± 0.90 mm. CH for the lowest (mean AL, 21.7 ± 0.39 mm), two middle (mean AL, 22.4 ± 0.15 and 22.9 ± 0.15 mm), and highest quartiles (mean AL, 23.7 ± 0.74 mm) of AL were 10.6 ± 2.1 mm Hg, 10.4 ± 2.1 mm Hg, 10.3 ± 2.3 mm Hg, and 10.2 ± 2.3 mm Hg respectively (age- and gender-adjusted Pearson's correlation coefficient r = -0.052; P = 0.001). In generalized estimating equation models adjusting for age, gender, and CCT, lower CH was significantly associated with longer AL (P < 0.001) and more myopic refractive error (P = 0.001). CONCLUSIONS: CH measurement is practical in young children because this is when myopia undergoes its most rapid progression. Prospective follow-up of this cohort at high risk for myopia is under way to determine whether low CH is predictive, or a consequence, of long AL.
Original languageEnglish
JournalInvestigative Opthalmology and Visual Science
Publication statusPublished - 2011


Dive into the research topics of 'Corneal biomechanics, refractive error, and axial length in Chinese primary school children.'. Together they form a unique fingerprint.

Cite this