Cryptotephra from the Icelandic Veiðivötn 1477CE eruption in a Greenland ice core: confirming the dating of volcanic events in the 1450sCE and assessing the eruption’s climatic impact

Peter M. Abbott, Gill Plunkett, Christophe Corona, Nathan J. Chellman, Joseph R. McConnell, John R. Pilcher, Markus Stoffel, Michael Sigl

Research output: Contribution to journalArticlepeer-review

12 Downloads (Pure)

Abstract

Volcanic eruptions are a key source of climatic variability, and reconstructing their past impact can improve our understanding of the operation of the climate system and increase the accuracy of future climate projections. Two annually resolved and independently dated palaeoarchives – tree rings and polar ice cores – can be used in tandem to assess the timing, strength and climatic impact of volcanic eruptions over the past ∼ 2500 years. The quantification of post-volcanic climate responses, however, has at times been hampered by differences between simulated and observed temperature responses that raised questions regarding the robustness of the chronologies of both archives. While many chronological mismatches have been resolved, the precise timing and climatic impact of two major sulfate-emitting volcanic eruptions during the 1450s CE, including the largest atmospheric sulfate-loading event in the last 700 years, have not been constrained. Here we explore this issue through a combination of tephrochronological evidence and high-resolution ice-core chemistry measurements from a Greenland ice core, the TUNU2013 record.

We identify tephra from the historically dated 1477 CE eruption of the Icelandic Veiðivötn–Bárðarbunga volcanic system in direct association with a notable sulfate peak in TUNU2013 attributed to this event, confirming that this peak can be used as a reliable and precise time marker. Using seasonal cycles in several chemical elements and 1477 CE as a fixed chronological point shows that ages of 1453 CE and 1458 CE can be attributed, with high precision, to the start of two other notable sulfate peaks. This confirms the accuracy of a recent Greenland ice-core chronology over the middle to late 15th century and corroborates the findings of recent volcanic reconstructions from Greenland and Antarctica. Overall, this implies that large-scale Northern Hemisphere climatic cooling affecting tree-ring growth in 1453 CE was caused by a Northern Hemisphere volcanic eruption in 1452 or early 1453 CE, and then a Southern Hemisphere eruption, previously assumed to have triggered the cooling, occurred later in 1457 or 1458 CE.

The direct attribution of the 1477 CE sulfate peak to the eruption of Veiðivötn, one of the most explosive from Iceland in the last 1200 years, also provides the opportunity to assess the eruption's climatic impact. A tree-ring-based reconstruction of Northern Hemisphere summer temperatures shows a cooling in the aftermath of the eruption of −0.35 ∘C relative to a 1961–1990 CE reference period and −0.1 ∘C relative to the 30-year period around the event, as well as a relatively weak and spatially incoherent climatic response in comparison to the less explosive but longer-lasting Icelandic Eldgjá 939 CE and Laki 1783 CE eruptions. In addition, the Veiðivötn 1477 CE eruption occurred around the inception of the Little Ice Age and could be used as a chronostratigraphic marker to constrain the phasing and spatial variability of climate changes over this transition if it can be traced in more regional palaeoclimatic archives.
Original languageEnglish
Pages (from-to) 565–585
JournalClimate of the Past
Volume17
Issue number2
DOIs
Publication statusPublished - 04 Mar 2021

Fingerprint Dive into the research topics of 'Cryptotephra from the Icelandic Veiðivötn 1477CE eruption in a Greenland ice core: confirming the dating of volcanic events in the 1450sCE and assessing the eruption’s climatic impact'. Together they form a unique fingerprint.

Cite this